\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multi-agent systems for quadcopters

  • * Corresponding author: M. Chyba

    * Corresponding author: M. Chyba 
Abstract Full Text(HTML) Figure(12) / Table(1) Related Papers Cited by
  • Unmanned Aerial Vehicles (UAVs) have been increasingly used in the context of remote sensing missions such as target search and tracking, mapping, or surveillance monitoring. In the first part of our paper we consider agent dynamics, network topologies, and collective behaviors. The objective is to enable multiple UAVs to collaborate toward a common goal, as one would find in a remote sensing setting. An agreement protocol is carried out by the multi-agents using local information, and without external user input. The second part of the paper focuses on the equations of motion for a specific type of UAV, the quadcopter, and expresses them as an affine nonlinear control system. Finally, we illustrate our work with a simulation of an agreement protocol for dynamically sound quadcopters augmenting the particle graph theoretic approach with orientation and a proper dynamics for quadcopters.

    Mathematics Subject Classification: Primary: 70E60; 93A14; Secondary: 70E55.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Rendezvous Missions with Unweighted Network. Displays two different communication network scenarios for a 4-agent rendezvous mission. Agreement positions coincide but trajectories differ

    Figure 2.  Comparison of the $ x, y, z $-motions for agent 1 for the scenarios of Fig. 1 corresponding to rendezvous missions with Unweighted Network

    Figure 3.  Comparison between trajectories on rendezvous missions with unweighted and weighted networks. The solid curves represents the trajectories for the unweighted network and the dashed ones for the weighted network. The two scenarios converge to the same agreement value

    Figure 4.  Comparison of the $ x, y, z $-motions for agent 1 for the rendezvous missions displayed in Figure 3. Observe that each component converges much more rapidly for the weighted network, corresponding to the difference in their $ \lambda_2 $ values: $ 13.060>1 $

    Figure 5.  Rendezvous missions comparing and unweighted network (solid curves) to a time-varying weighted one (dashed curves). They both agree on the consensus joint value. The points where the dashed curves diverge from the solid ones correspond to the addition of edges

    Figure 6.  Comparison of the $ x, y, z $-motions for agent 1 for the rendezvous mission of Figure 5. The components of the trajectory corresponding to the time-varying network clearly converge more rapidly

    Figure 7.  A quadcopter rising straight up, then yawing while hovering, then flying straight along the body $ x $-axis. Top: position in space. Bottom: orientation angles over time

    Figure 8.  The controls used to produce the motion in Figure 7. Top: angular velocities of each of the four motors over time. Bottom: total thrust over time

    Figure 9.  Three drones start at position $ (0, 0, 0) $, $ (0, 9, 0) $ and $ (15, 9, 0) $ with initial yaw angles $ 0 $, $ -\pi/4 $, and $ \pi/2 $. Their trajectories to the rendezvous position are shown

    Figure 10.  The yaw $ \psi $ over time for each drone. Total flight times differ for each drone

    Figure 11.  The controls used to produce the motions in Figures 9 and 10. We show the four motor speeds and total thrust for each drone as functions of time

    Figure 12.  Comparison of two methods of motion planning. Dashed curves include dynamics; solid curves do not. Left: $ x $-coordinate over time. Right: $ y $-coordinate over time

    Table 1.  Parameters used in simulations

    Constant Symbol Value
    drone mass $ m $ 0.468
    drone inertia $ J $ diag($ (3.8278, 3.8288, 7.6566)\cdot10^{-3} $)
    rotor inertia $ J_r $ diag$ (0, 0, 2.8385\cdot 10^{-5}) $
    distance to rotor $ d $ 0.25
    thrust coefficient $ K_r $ $ 2.9842\cdot 10^{-5} $
    translational drag $ C_D $ $ (5.5670, 5.5670, 6.3540)\cdot10^{-4} $
    rotational drag $ C_{\tau} $ $ (5.5670, 5.5670, 6.3540)\cdot 10^{-4} $
    propeller drag $ K_d $ $ 3.2320\cdot 10^{-7} $
     | Show Table
    DownLoad: CSV
  • [1] W. Anderson Jr. and T. Morley, Eigenvalues of the Laplacian of a graph, Linear and Multilinear Algebra, 18 (1985), 141-145.  doi: 10.1080/03081088508817681.
    [2] AUVs on-board capability for image analysis for real time situation assessment, https://www.youtube.com/watch?v=qo0VWWvTgdU
    [3] A. Bloch, Nonholonomic Mechanics and Control, $2^{nd}$ edition, Springer-Verlag, New York, 2015. doi: 10.1007/978-1-4939-3017-3.
    [4] A. BlochI. HusseinM. Leok and A. Sanyal, Geometric structure-preserving optimal control of the rigid body, Journal of Dynamical and Control Systems, 15 (2009), 307-330.  doi: 10.1007/s10883-009-9071-2.
    [5] A. BlochP. KrishnaprasadJ. Marsden and G. Sanchez De Alvarez, Stabilization of rigid body dynamics by internal and external torques, Automatica, 28 (1992), 745-756.  doi: 10.1016/0005-1098(92)90034-D.
    [6] A. BlochN. Leonard and J. Marsden, Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem, IEEE Trans. Automat. Control, 45 (2000), 2253-2270.  doi: 10.1109/9.895562.
    [7] H. BouadiM. Bouchoucha and and M. Tadjine, Sliding mode control based on backstepping approach for an UAV type-quadrotor, International Journal of Mechanical and Mechatronics Engineering, 1 (2007), 39-44. 
    [8] H. Bouadi and M. Tadjine, Nonlinear observer design and sliding mode control of four rotors helicopter, International Journal of Aerospace and Mechanical Engineering, 1 (2007), 354-359. 
    [9] F. BulloJ. Cortes and  and S. MartinezDistributed Control of Robotic Networks, Princeton University Press, 2009.  doi: 10.1515/9781400831470.
    [10] F. Bullo and A. Lewis, Geometric Control of Mechanical Systems, Springer-Verlag, New York, 2005. doi: 10.1007/978-1-4899-7276-7.
    [11] Y. CaoW. YuW. Ren and G. Chen, An overview of recent progress in the study of distributed multi-agent coordination, IEEE Transactions on Industrial Informatics, 9 (2013), 427-438.  doi: 10.1109/TII.2012.2219061.
    [12] R. Carney, M. Chyba et al., Multi-agents path planning for a swarm of unmanned aerial vehicles, 2020 IEEE International Geoscience and Remote Sensing Symposium, (2020).
    [13] R. Chandrasekaran, L. Colombo, M. Camarinha, R. Banavar and A. Bloch, Variational collision and obstacle avoidance of multi-agent systems on Riemannian manifolds, 2020 European Control Conference, (2020), 1689–1694.
    [14] S. ChungA. ParanjapeP. DamesS. Shen and V. Kumar, A survey on aerial swarm robotics, IEEE Transactions on Robotics, 34 (2018), 837-855.  doi: 10.1109/TRO.2018.2857475.
    [15] M. Chyba, R. Carney, C. Gray and Z. Trimble, Increasing small unmanned aerial system real-time autonomy, 2020 IEEE International Geoscience and Remote Sensing Symposium, (2020).
    [16] M. ChybaT. HaberkornR. Smith and G. Wilkens, A geometric analysis of trajectory design for underwater vehicles, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 233-262.  doi: 10.3934/dcdsb.2009.11.233.
    [17] F. Costa, J. Ueyama, T. Braun, G. Pessin, F. Osório and P. Vargas, The use of unmanned aerial vehicles and wireless sensor network in agricultural applications, IEEE International Symposium on Geoscience and Remote Sensing, (2012). doi: 10.1109/IGARSS.2012.6352477.
    [18] P. Doherty and P. Rudol, A UAV search and rescue scenario with human body detection and geolocalization, Australian Conference on Artificial Intelligence, (2007), 1–13. doi: 10.1007/978-3-540-76928-6_1.
    [19] M. Erdelj and E. Natalizio, UAV-assisted disaster management: Applications and open issues, 2016 International Conference on Computing, Networking and Communications (ICNC), (2016). doi: 10.1109/ICCNC.2016.7440563.
    [20] J. Kim, S. Kim, C. Ju and H. Son, Unmanned aerial vehicles in agriculture: a review of perspective of platform, control, and applications, IEEE Access, 7 (2019). doi: 10.1109/ACCESS.2019.2932119.
    [21] S. KnornZ. Chen and R. Middleton, Collective control of multiagent systems, IEEE Transactions on Control of Network Systems, 3 (2016), 334-347.  doi: 10.1109/TCNS.2015.2468991.
    [22] G. LafferriereA. WilliamsJ. Caughman and J. Veerman, Decentralized control of vehicle formations, Systems & Control Letters, 54 (2005), 899-910.  doi: 10.1016/j.sysconle.2005.02.004.
    [23] A. Lewis and R. Murray, Configuration controllability of simple mechanical control systems, SIAM Journal on Control and Optimization, 35 (1997), 766-790.  doi: 10.1137/S0363012995287155.
    [24] T. Luukkonen, Modelling and Control of Quadcopter, Independent research project, Aalto University in Espoo, Finland, 2011.
    [25] M. Mesbahi and  M. EgerstedtGraph Theoretic Methods in Multiagent Networks, Princeton University Press, 2010.  doi: 10.1515/9781400835355.
    [26] M. Mueller and T. D'Andrea, Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers, 2014 IEEE International Conference on Robotics and Automation (ICRA), (2014), 45–52. doi: 10.1109/ICRA.2014.6906588.
    [27] I. Okoloko, Path planning for multiple spacecraft using consensus with LMI avoidance constraints, IEEE Aerospace Conference, (2012), 1–8. doi: 10.1109/AERO.2012.6187118.
    [28] R. Olfati-SaberJ. Fax and R. Murray, Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE, 95 (2007), 215-233.  doi: 10.1109/JPROC.2006.887293.
    [29] P. Rooney, A. Bloch and C. Rangan, Trees, forests, and stationary states of quantum Lindblad systems, arXiv: 1810.11144, (2018).
    [30] A. SanyalA. Bloch and N. McClamroch, Dynamics of multibody systems in planar motion in a central gravitational field, Dynamical Systems, 19 (2004), 303-343.  doi: 10.1080/14689360412331309160.
    [31] R. SmithM. ChybaG. Wilkens and C. Catone, A geometrical approach to the motion planning problem for a submerged rigid body, International Journal of Control, 82 (2009), 1641-1656.  doi: 10.1080/00207170802654410.
    [32] V. Stepanyan and K. Krishnakumar, Estimation, navigation and control of multi-rotor drones in an urban wind field, AIAA Information Systems-AIAA Infotech @ Aerospace, (2017). doi: 10.2514/6.2017-0670.
    [33] S. Waharte and N. Trigoni, Supporting search and rescue operations with UAVs, 2010 International Conference on Emerging Security Technologies, (2010). doi: 10.1109/EST.2010.31.
    [34] S. Wich and  L. KohConservation Drones: Mapping and Monitoring Biodiversity, Oxford University Press, New York, 2018. 
  • 加载中

Figures(12)

Tables(1)

SHARE

Article Metrics

HTML views(1335) PDF downloads(551) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return