September  2021, 13(3): 333-354. doi: 10.3934/jgm.2021008

Schwinger's picture of quantum mechanics: 2-groupoids and symmetries

1. 

Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany

2. 

Departamento de Matematicas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganes, Spain

3. 

Instituto de Ciencias Matemáticas (CSIC - UAM - UC3M - UCM) ICMAT, Campus Cantoblanco UAM, C/ Nicolás Cabrera, 13-15, 28049 Madrid, Spain

4. 

Dipartimento di Fisica E.Pancini, Universitá degli Studi di Napoli Federico II, Complesso Universitario di Monte S.Angelo, via Cintia, 80126 Napoli, Italy

5. 

INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, via Cintia, 80126 Napoli, Italy

6. 

Departamento de Matematicas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganes, Spain

7. 

Dipartimento di Matematica e Applicazioni R.Caccioppoli, Universitá degli Studi di Napoli Federico II, Complesso Universitario di Monte S.Angelo, via Cintia, 80126 Napoli, Italy

* Corresponding author

Received  December 2020 Published  September 2021 Early access  May 2021

Starting from the groupoid approach to Schwinger's picture of Quantum Mechanics, a proposal for the description of symmetries in this framework is advanced. It is shown that, given a groupoid $ G\rightrightarrows \Omega $ associated with a (quantum) system, there are two possible descriptions of its symmetries, one "microscopic", the other one "global". The microscopic point of view leads to the introduction of an additional layer over the grupoid $ G $, giving rise to a suitable algebraic structure of 2-groupoid. On the other hand, taking advantage of the notion of group of bisections of a given groupoid, the global perspective allows to construct a group of symmetries out of a 2-groupoid. The latter notion allows to introduce an analog of the Wigner's theorem for quantum symmetries in the groupoid approach to Quantum Mechanics.

Citation: Florio M. Ciaglia, Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo, Luca Schiavone. Schwinger's picture of quantum mechanics: 2-groupoids and symmetries. Journal of Geometric Mechanics, 2021, 13 (3) : 333-354. doi: 10.3934/jgm.2021008
References:
[1]

R. Brown and C. B. Spencer, Double groupoids and crossed modules, Cahiers Top. Géom. Diff., 17 (1976), 343-362.   Google Scholar

[2]

M. R. Buneci, Groupoid $C^*$-algebras, Surveys in Mathematics and its Applications, 1 (2006), 71-98.   Google Scholar

[3]

F. M. Ciaglia, A. Ibort and G. Marmo, A gentle introduction to schwinger's formulation of quantum mechanics: The groupoid picture, Modern Physics Letters A, 33 (2018), 1850122. doi: 10.1142/S0217732318501225.  Google Scholar

[4]

F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics I: Groupoids, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950119. doi: 10.1142/S0219887819501196.  Google Scholar

[5]

F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics II: Algebras and observables, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950136. doi: 10.1142/S0219887819501366.  Google Scholar

[6]

F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics III: the statistical interpretation, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950165. doi: 10.1142/s0219887819501652.  Google Scholar

[7]

F. M. Ciaglia, F. Di Cosmo, A. Ibort and G. Marmo, {Schwinger's picture of quantum mechanics IV: composition and independence}, International Journal of Geometric Methods in Modern Physics, 17 (2020) 2050058. doi: 10.1142/S0219887820500589.  Google Scholar

[8]

F. M. Ciaglia, F. Di Cosmo, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics, International Journal of Geometric Methods in Modern Physics, 17 (2020), 2050054. doi: 10.1142/S0219887820500541.  Google Scholar

[9]

R. P. Feynman and L. M. Brown, Feynman's Thesis: A New Approach to Quantum Theory, World Scientific, Singapore, 2005. Google Scholar

[10]

R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-61458-3.  Google Scholar

[11]

P. Hahn, Haar measure for measure groupoids, Trans. Amer. Math.Soc., 242 (1978), 1-33.  doi: 10.1090/S0002-9947-1978-0496796-6.  Google Scholar

[12] A. Ibort and M. A. Rodriguez, An Introduction to the Theory of Groups, Groupoids and Their Representations, CRC Press, Boca Raton, 2019.  doi: 10.1201/b22019.  Google Scholar
[13]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin Heidelberg, 1993. doi: 10.1007/978-3-662-02950-3.  Google Scholar

[14]

N. P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-1680-3.  Google Scholar

[15] K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Cambridge University Press, Cambridge, 2005.  doi: 10.1017/CBO9781107325883.  Google Scholar
[16]

G. W. Mackey, Ergodic theory, group theory and differential geometry, Proc. Nat. Acad. Sci. USA, 50 (1963), 1184-1191.  doi: 10.1073/pnas.50.6.1184.  Google Scholar

[17]

G. W. Mackey, Ergodic theory and virtual groups, Math. Ann., 166 (1966), 187-207.  doi: 10.1007/BF01361167.  Google Scholar

[18]

F. J. Murray and J. Von Neumann, On rings of operators, Ann. Math., 37 (1936), 116-229.  doi: 10.2307/1968693.  Google Scholar

[19]

J. Renault, A Groupoid Approach to $C^{\star }-$Algebras, Springer-Verlag, Berlin, 1980.  Google Scholar

[20] E. Riehl, Categorical Homotopy Theory, Cambridge University Press, Cambridge, 2014.  doi: 10.1017/CBO9781107261457.  Google Scholar
[21] J. Schwinger, Quantum Kinematics and Dynamics, CRC Press, Boca Raton, 2000.   Google Scholar
[22]

J. Schwinger, The theory of quantized fields. I, Physical Reviews, 82 (1951), 914-927.  doi: 10.1103/PhysRev.82.914.  Google Scholar

[23]

R. D. Sorkin, Quantum mechanics as quantum measure theory, Modern Physics Letters A, 9 (1994), 3119-3127.  doi: 10.1142/S021773239400294X.  Google Scholar

[24]

M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, 2002.  Google Scholar

[25]

A. Weinstein, Groupoids: Unifying internal and external symmetry, Notices of the AMS, 43 (1996), 744–752.  Google Scholar

[26] E. P. Wigner, Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra, Academic Press, London, 1959.   Google Scholar

show all references

References:
[1]

R. Brown and C. B. Spencer, Double groupoids and crossed modules, Cahiers Top. Géom. Diff., 17 (1976), 343-362.   Google Scholar

[2]

M. R. Buneci, Groupoid $C^*$-algebras, Surveys in Mathematics and its Applications, 1 (2006), 71-98.   Google Scholar

[3]

F. M. Ciaglia, A. Ibort and G. Marmo, A gentle introduction to schwinger's formulation of quantum mechanics: The groupoid picture, Modern Physics Letters A, 33 (2018), 1850122. doi: 10.1142/S0217732318501225.  Google Scholar

[4]

F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics I: Groupoids, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950119. doi: 10.1142/S0219887819501196.  Google Scholar

[5]

F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics II: Algebras and observables, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950136. doi: 10.1142/S0219887819501366.  Google Scholar

[6]

F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics III: the statistical interpretation, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950165. doi: 10.1142/s0219887819501652.  Google Scholar

[7]

F. M. Ciaglia, F. Di Cosmo, A. Ibort and G. Marmo, {Schwinger's picture of quantum mechanics IV: composition and independence}, International Journal of Geometric Methods in Modern Physics, 17 (2020) 2050058. doi: 10.1142/S0219887820500589.  Google Scholar

[8]

F. M. Ciaglia, F. Di Cosmo, A. Ibort and G. Marmo, Schwinger's picture of quantum mechanics, International Journal of Geometric Methods in Modern Physics, 17 (2020), 2050054. doi: 10.1142/S0219887820500541.  Google Scholar

[9]

R. P. Feynman and L. M. Brown, Feynman's Thesis: A New Approach to Quantum Theory, World Scientific, Singapore, 2005. Google Scholar

[10]

R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-61458-3.  Google Scholar

[11]

P. Hahn, Haar measure for measure groupoids, Trans. Amer. Math.Soc., 242 (1978), 1-33.  doi: 10.1090/S0002-9947-1978-0496796-6.  Google Scholar

[12] A. Ibort and M. A. Rodriguez, An Introduction to the Theory of Groups, Groupoids and Their Representations, CRC Press, Boca Raton, 2019.  doi: 10.1201/b22019.  Google Scholar
[13]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin Heidelberg, 1993. doi: 10.1007/978-3-662-02950-3.  Google Scholar

[14]

N. P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-1680-3.  Google Scholar

[15] K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Cambridge University Press, Cambridge, 2005.  doi: 10.1017/CBO9781107325883.  Google Scholar
[16]

G. W. Mackey, Ergodic theory, group theory and differential geometry, Proc. Nat. Acad. Sci. USA, 50 (1963), 1184-1191.  doi: 10.1073/pnas.50.6.1184.  Google Scholar

[17]

G. W. Mackey, Ergodic theory and virtual groups, Math. Ann., 166 (1966), 187-207.  doi: 10.1007/BF01361167.  Google Scholar

[18]

F. J. Murray and J. Von Neumann, On rings of operators, Ann. Math., 37 (1936), 116-229.  doi: 10.2307/1968693.  Google Scholar

[19]

J. Renault, A Groupoid Approach to $C^{\star }-$Algebras, Springer-Verlag, Berlin, 1980.  Google Scholar

[20] E. Riehl, Categorical Homotopy Theory, Cambridge University Press, Cambridge, 2014.  doi: 10.1017/CBO9781107261457.  Google Scholar
[21] J. Schwinger, Quantum Kinematics and Dynamics, CRC Press, Boca Raton, 2000.   Google Scholar
[22]

J. Schwinger, The theory of quantized fields. I, Physical Reviews, 82 (1951), 914-927.  doi: 10.1103/PhysRev.82.914.  Google Scholar

[23]

R. D. Sorkin, Quantum mechanics as quantum measure theory, Modern Physics Letters A, 9 (1994), 3119-3127.  doi: 10.1142/S021773239400294X.  Google Scholar

[24]

M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, 2002.  Google Scholar

[25]

A. Weinstein, Groupoids: Unifying internal and external symmetry, Notices of the AMS, 43 (1996), 744–752.  Google Scholar

[26] E. P. Wigner, Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra, Academic Press, London, 1959.   Google Scholar
Figure 1.  A schematic representation of a bisection: the red line connects the elements of the subset $ b_1\subset G $ whilst the dotted arrows represent the map $ b_s,b_t,s\mid_b,t\mid_b $. The red arrows denotes the bijective maps $ \varphi_{b_1} $ associated with the bisection $ b_1 $
Figure 2.  Schematic representation of the group of bisections $ \mathscr{G} $ of the groupoid $ C_2(4) $
Table 1.  Multiplication table of the group $ \mathscr{G} $ of bisections of the groupoid $ C_2(4)\,\rightrightarrows \,\Omega_2 $
0 $ b_e $ $ b_+ $ $ b_- $ $ b_g $ $ b_1 $ $ b_2 $ $ b_3 $ $ b_4 $
$ b_e $ $ b_e $ $ b_+ $ $ b_- $ $ b_g $ $ b_1 $ $ b_2 $ $ b_3 $ $ b_4 $
$ b_+ $ $ b_+ $ $ b_e $ $ b_g $ $ b_- $ $ b_3 $ $ b_4 $ $ b_1 $ $ b_2 $
$ b_- $ $ b_- $ $ b_g $ $ b_e $ $ b_+ $ $ b_2 $ $ b_1 $ $ b_4 $ $ b_3 $
$ b_g $ $ b_g $ $ b_- $ $ b_+ $ $ b_e $ $ b_4 $ $ b_3 $ $ b_2 $ $ b_1 $
$ b_1 $ $ b_1 $ $ b_2 $ $ b_3 $ $ b_4 $ $ b_e $ $ b_+ $ $ b_- $ $ b_g $
$ b_2 $ $ b_2 $ $ b_1 $ $ b_4 $ $ b_3 $ $ b_- $ $ b_g $ $ b_e $ $ b_+ $
$ b_3 $ $ b_3 $ $ b_4 $ $ b_1 $ $ b_2 $ $ b_+ $ $ b_e $ $ b_g $ $ b_- $
$ b_4 $ $ b_4 $ $ b_3 $ $ b_2 $ $ b_1 $ $ b_g $ $ b_- $ $ b_+ $ $ b_e $
0 $ b_e $ $ b_+ $ $ b_- $ $ b_g $ $ b_1 $ $ b_2 $ $ b_3 $ $ b_4 $
$ b_e $ $ b_e $ $ b_+ $ $ b_- $ $ b_g $ $ b_1 $ $ b_2 $ $ b_3 $ $ b_4 $
$ b_+ $ $ b_+ $ $ b_e $ $ b_g $ $ b_- $ $ b_3 $ $ b_4 $ $ b_1 $ $ b_2 $
$ b_- $ $ b_- $ $ b_g $ $ b_e $ $ b_+ $ $ b_2 $ $ b_1 $ $ b_4 $ $ b_3 $
$ b_g $ $ b_g $ $ b_- $ $ b_+ $ $ b_e $ $ b_4 $ $ b_3 $ $ b_2 $ $ b_1 $
$ b_1 $ $ b_1 $ $ b_2 $ $ b_3 $ $ b_4 $ $ b_e $ $ b_+ $ $ b_- $ $ b_g $
$ b_2 $ $ b_2 $ $ b_1 $ $ b_4 $ $ b_3 $ $ b_- $ $ b_g $ $ b_e $ $ b_+ $
$ b_3 $ $ b_3 $ $ b_4 $ $ b_1 $ $ b_2 $ $ b_+ $ $ b_e $ $ b_g $ $ b_- $
$ b_4 $ $ b_4 $ $ b_3 $ $ b_2 $ $ b_1 $ $ b_g $ $ b_- $ $ b_+ $ $ b_e $
[1]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[2]

Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009

[3]

Robert Lauter and Victor Nistor. On spectra of geometric operators on open manifolds and differentiable groupoids. Electronic Research Announcements, 2001, 7: 45-53.

[4]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[5]

Víctor Manuel Jiménez Morales, Manuel De León, Marcelo Epstein. Lie groupoids and algebroids applied to the study of uniformity and homogeneity of material bodies. Journal of Geometric Mechanics, 2019, 11 (3) : 301-324. doi: 10.3934/jgm.2019017

[6]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[7]

Theodore Voronov. Book review: General theory of Lie groupoids and Lie algebroids, by Kirill C. H. Mackenzie. Journal of Geometric Mechanics, 2021, 13 (3) : 277-283. doi: 10.3934/jgm.2021026

[8]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[9]

Lennard F. Bakker, Pedro Martins Rodrigues. A profinite group invariant for hyperbolic toral automorphisms. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 1965-1976. doi: 10.3934/dcds.2012.32.1965

[10]

Cesare Tronci. Momentum maps for mixed states in quantum and classical mechanics. Journal of Geometric Mechanics, 2019, 11 (4) : 639-656. doi: 10.3934/jgm.2019032

[11]

Mathieu Molitor. On the relation between geometrical quantum mechanics and information geometry. Journal of Geometric Mechanics, 2015, 7 (2) : 169-202. doi: 10.3934/jgm.2015.7.169

[12]

Håkon Hoel, Anders Szepessy. Classical Langevin dynamics derived from quantum mechanics. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 4001-4038. doi: 10.3934/dcdsb.2020135

[13]

Alexander V. Bobylev, Sergey V. Meleshko. On group symmetries of the hydrodynamic equations for rarefied gas. Kinetic & Related Models, 2021, 14 (3) : 469-482. doi: 10.3934/krm.2021012

[14]

Axel Kohnert, Johannes Zwanzger. New linear codes with prescribed group of automorphisms found by heuristic search. Advances in Mathematics of Communications, 2009, 3 (2) : 157-166. doi: 10.3934/amc.2009.3.157

[15]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[16]

Weinan E, Jianfeng Lu. Mathematical theory of solids: From quantum mechanics to continuum models. Discrete & Continuous Dynamical Systems, 2014, 34 (12) : 5085-5097. doi: 10.3934/dcds.2014.34.5085

[17]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[18]

Henrique Bursztyn, Alejandro Cabrera. Symmetries and reduction of multiplicative 2-forms. Journal of Geometric Mechanics, 2012, 4 (2) : 111-127. doi: 10.3934/jgm.2012.4.111

[19]

Artur M. C. Brito da Cruz, Natália Martins, Delfim F. M. Torres. Hahn's symmetric quantum variational calculus. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 77-94. doi: 10.3934/naco.2013.3.77

[20]

Colin J. Cotter, Michael John Priestley Cullen. Particle relabelling symmetries and Noether's theorem for vertical slice models. Journal of Geometric Mechanics, 2019, 11 (2) : 139-151. doi: 10.3934/jgm.2019007

2020 Impact Factor: 0.857

Article outline

Figures and Tables

[Back to Top]