\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Control and maintenance of fully-constrained and underconstrained rigid body motion on Lie groups and their tangent bundles

  • * Corresponding author: Brennan McCann

    * Corresponding author: Brennan McCann 

The first author is supported by FIRST and GAANN

Abstract Full Text(HTML) Figure(15) Related Papers Cited by
  • Presented herein are a class of methodologies for conducting constrained motion analysis of rigid bodies within the Udwadia-Kalaba (U-K) formulation. The U-K formulation, primarily devised for systems of particles, is advanced to rigid body dynamics in the geometric mechanics framework and a novel development of U-K formulation for use on nonlinear manifolds, namely the special Euclidean group $ {\mathsf{SE}(3)}$ and its second order tangent bundle ${\mathsf{T}^2\mathsf{SE}(3)} $, is proposed in addition to the formulation development on Euclidean spaces. Then, a Morse-Lyapunov based tracking controller using backstepping is applied to capture disturbed initial conditions that the U-K formulation cannot account for. This theoretical development is then applied to fully-constrained and underconstrained scenarios of rigid-body spacecraft motion in a lunar orbit, and the translational and rotational motions of the spacecraft and the control inputs obtained using the proposed methodologies to achieve and maintain those constrained motions are studied.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Inertial $ \mathcal N $, perifocal $ \mathcal P $, and body $ \mathcal B $ reference frames

    Figure 2.  Fully-constrained translational motion comparison between formulation on $ \mathbb{R}^{6} $ and $ {\mathsf{T}^2\mathsf{SE}(3)}$

    Figure 3.  Fully-constrained rotational motion comparison between formulation on $ \mathbb{R}^{6} $ and $ {\mathsf{T}^2\mathsf{SE}(3)}$

    Figure 4.  Fully-constrained control input comparison between formulations on $ \mathbb{R}^{6} $ and $ {\mathsf{T}^2\mathsf{SE}(3)}$

    Figure 5.  Translational motion in underconstrained (UC) case versus that in the fully-constrained (FC) case

    Figure 6.  Rotational motion in underconstrained (UC) case versus that in the fully-constrained (FC) case

    Figure 7.  Control inputs in underconstrained (UC) case versus those in the fully-constrained (FC) case

    Figure 8.  Underconstrained translational motion comparison between formulation on $ \mathbb{R}^{6} $ and $ {\mathsf{T}^2\mathsf{SE}(3)}$

    Figure 9.  Underconstrained rotational motion comparison between formulation on $ \mathbb{R}^{6} $ and ${\mathsf{T}^2\mathsf{SE}(3)} $

    Figure 10.  Underconstrained control inputs comparison between formulation on $ \mathbb{R}^{6} $ and ${\mathsf{T}^2\mathsf{SE}(3)} $

    Figure 11.  Position response using U-K and M-L control with disturbed ICs

    Figure 12.  Velocity response using U-K and M-L control with disturbed ICs

    Figure 13.  Attitude response using U-K and M-L control with disturbed ICs

    Figure 14.  Angular velocity response using U-K and M-L control with disturbed ICs

    Figure 15.  Total control input using U-K and M-L control with disturbed ICs

  • [1] Geometry of the double tangent bundles of banach manifolds, 74.
    [2] P.-A. AbsilR. Mahony and  R. SepulchreOptimization Algorithms on Matrix Manifolds, Princeton University Press, New Jersey, 2008.  doi: 10.1515/9781400830244.
    [3] J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Computer Methods in Applied Mechanics and Engineering, 1 (1972), 1-16.  doi: 10.1016/0045-7825(72)90018-7.
    [4] S. P. Bhat and D. S. Bernstein, A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon, System Control Letters, 39 (2000), 63-70.  doi: 10.1016/S0167-6911(99)00090-0.
    [5] H. Cho and F. E. Udwadia, Explicit solution to the full nonlinear problem for satellite formation-keeping, Acta Astronautica, 67 (2010), 369-387.  doi: 10.1016/j.actaastro.2010.02.010.
    [6] C. T. J. Dodson and G. N. Galanis, Second order tangent bundles of infinite dimensional manifolds, Journal of Geometry and Physics, 52 (2004), 127-136.  doi: 10.1016/j.geomphys.2004.02.005.
    [7] H. K. Khalil, Nonlinear Systems, 3rd edition, Upper Saddle River, New Jersey, 2002.
    [8] T. Lam, A new approach to mission design based on the fundamental equations of motion, Journal of Aerospace Engineering, 19 (2006), 59-67.  doi: 10.1061/(ASCE)0893-1321(2006)19:2(59).
    [9] A. D. Lewis, The geometry of the gibbs-appell equations and gauss's principle of least constraint, Reports on Mathematical Physics, 38 (1996), 11-28.  doi: 10.1016/0034-4877(96)87675-0.
    [10] G. M. Low, Apollo 11 mission report, 1969, https://www.nasa.gov/specials/apollo50th/pdf/A11_MissionReport.pdf.
    [11] C. G. Mayhew, R. G. Sanfelice and A. R. Teel, On quaternion-based attitude control and the unwinding phenomenon, in Proceedings of the 2011 American Control Conference, 2011,299–304. doi: 10.1109/ACC.2011.5991127.
    [12] B. S. McCann and M. Nazari, Conjugate Gradient Algorithm for Constrained Optimization on the Special Euclidean Group, 2021.
    [13] B. S. McCann, W. T. Stackhouse and M. Nazari, Advancement of the Udwadia-Kalaba approach for rigid body constrained motion analysis in geometric mechanics, AIAA Scitech 2021 Forum. doi: 10.2514/6.2021-0976.
    [14] M. W. Memon, M. Nazari, D. Seo and E. A. Butcher, Fuel efficiency of fully- and under-constrained {C}oulomb formations in slightly elliptic reference orbits, IEEE Transactions on Aerospace and Electronic Systems.
    [15] M. Nazari, M. Maadani, E. A. Butcher and T. Yucelen, Morse-Lyapunov-based control of rigid body motion on TSE(3) via backstepping, in SciTech, 2018. doi: 10.2514/6.2018-0602.
    [16] M. C. NielsenO. A. EidsvikM. Blanke and I. Schjølberg, Constrained multi-body dynamics for modular underwater robots: Theory and experiments, Ocean Engineering, 149 (2018), 358-372.  doi: 10.1016/j.oceaneng.2017.12.007.
    [17] C. M. Pappalardo and D. Guida, On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems, Archive of Applied Mechanics, 88 (2018), 419-451.  doi: 10.1007/s00419-017-1317-y.
    [18] H. Patel, T. A. Henderson and M. Nazari, Application of Udwadia-Kalaba formulation to three-body problem, AAS/AIAA Astrodynamics Specialist Conference, AAS 19–706.
    [19] A. A. Pothen and S. Ulrich, Close-range rendezvous with a moving target spacecraft using Udwadia- Kalaba equation, in 2019 American Control Conference (ACC), (2019), 3267–3272. doi: 10.23919/ACC.2019.8815115.
    [20] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer, New York, NY, 1999. doi: 10.1007/978-1-4757-3108-8.
    [21] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems, 4th edition, American Institute of Aeronautics and Astronautics, 2018. doi: 10.2514/4.861550.
    [22] W. T. Stackhouse, M. Nazari, T. Henderson and R. J. Prazenica, Adaptive control design using the Udwadia-Kalaba formulation for hovering over an asteroid with unknown gravitational parameters, AIAA Scitech 2020 Forum. doi: 10.2514/6.2020-0843.
    [23] H. SunH. ZhaoS. ZhenK. HuangF. ZhaoX. Chen and Y.-H. Chen, Application of the Udwadia-Kalaba approach to tracking control of mobile robots, Nonlinear Dynamics, 83 (2016), 389-400.  doi: 10.1007/s11071-015-2335-3.
    [24] A. Suri, Higher order tangent bundles, Mediterranean Journal of Mathematics, 14 (2017), Paper No. 5, 17 pp. doi: 10.1007/s00009-016-0812-7.
    [25] F. E. Udwadia and R. E. Kalaba, A new perspective on constrained motion, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439 (1992), 407-410.  doi: 10.1098/rspa.1992.0158.
    [26] F. E. Udwadia and  R. E. KalabaAnalytical Dynamics: A New Approach, Cambridge University Press, New York, 2008.  doi: 10.1017/CBO9780511665479.
    [27] F. E. Udwadia and A. D. Schutte, A unified approach to rigid body rotational dynamics and control, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468 (2011), 395-414.  doi: 10.1098/rspa.2011.0233.
    [28] F. E. UdwadiaT. Wanichanon and H. Cho, Methodology for satellite formation-keeping in the presence of system uncertainties, Journal of Guidance, Control, and Dynamics, 37 (2014), 1611-1624.  doi: 10.2514/1.G000317.
    [29] D. A. Vallado, Fundamentals of Astrodynamics and Applications, 3rd edition, Microcosm Press, 2007.
    [30] A. Valverde and P. Tsiotras, Dual quaternion framework for modeling of spacecraft-mounted multibody robotic systems, Frontiers in Robotics and AI, 5. doi: 10.3389/frobt.2018.00128.
    [31] M. Wittal, G. Mangiacapra, A. Appakonam, M. Nazari and E. Capello, Stochastic spacecraft navigation and control in Lie group SE(3) around small irregular bodies, AAS/AIAA Astrodynamics Specialist Conference, AAS 20–690.
    [32] H. YinY.-H. Chen and D. Yu, Vehicle motion control under equality and inequality constraints: A diffeomorphism approach, Nonlinear Dynamics, 95 (2019), 175-194.  doi: 10.1007/s11071-018-4558-6.
    [33] G. A. Zupp, An analysis and a historical review of the apollo program lunar module touchdown dynamics, NASA/SP-2013-605.
  • 加载中

Figures(15)

SHARE

Article Metrics

HTML views(442) PDF downloads(341) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return