Advanced Search
Article Contents
Article Contents

Towards a 2-dimensional notion of holonomy

This article was published in Advances in Mathematics, 178, Ronald Brown and İlhan İçen "Towards a 2-dimensional notion of holonomy", 141–175, Copyright Elsevier (2003)

Abstract Full Text(HTML) Related Papers Cited by
  • Previous work (Pradines, C.R. Acad. Sci. Paris 263 (1966) 907, Aof and Brown, Topology Appl. 47 (1992) 97) has given a setting for a holonomy Lie groupoid of a locally Lie groupoid. Here we develop analogous 2-dimensional notions starting from a locally Lie crossed module of groupoids. This involves replacing the Ehresmann notion of a local smooth coadmissible section of a groupoid by a local smooth coadmissible homotopy (or free derivation) for the crossed module case. The development also has to use corresponding notions for certain types of double groupoids. This leads to a holonomy Lie groupoid rather than double groupoid, but one which involves the $ 2 $-dimensional information.

    Mathematics Subject Classification: 18D05; 58H05; 22A22; 22E99.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. A. E.-S. A.-F. Aof and R. Brown, The holonomy groupoid of a locally topological groupoid, Top. and its Appl., 47 (1992), 97-113.  doi: 10.1016/0166-8641(92)90065-8.
    [2] R. Brown, Holonomy and monodromy groupoids, U. C. N. W. Maths Preprint, (1982), 82.2.
    [3] R. Brown, Groupoids and crossed objects in algebraic topology, Homology, Homotopy and its Applications, 1 (1999), 1-78.  doi: 10.4310/HHA.1999.v1.n1.a1.
    [4] R. Brown and P. J. Higgins, On the connection between the second relative homotopy groups of some related spaces, Proc. London Math. Soc. (3), 36 (1978), 193-212.  doi: 10.1112/plms/s3-36.2.193.
    [5] R. Brown and P. J. Higgins, On the algebra of cubes, J. Pure Appl. Algebra, 21 (1981), 233-260.  doi: 10.1016/0022-4049(81)90018-9.
    [6] R. Brown and P. J. Higgins, Tensor products and homotopies for $\omega$-groupoids and crossed complexes, J. Pure and Appl. Algebra, 47 (1987), 1-33.  doi: 10.1016/0022-4049(87)90099-5.
    [7] R. Brown and İ. İçen, Lie local subgroupoids and their holonomy and monodromy Lie groupoids, Top and its Appl., (to appear). doi: 10.1016/S0166-8641(00)00062-6.
    [8] R. Brown and İ. İçen, Homotopies and automorphism of crossed modules of groupoids, (submitted). doi: 10.1023/A:1023544303612.
    [9] R. Brown and K. C. H. Mackenzie, Determination of a double Lie groupoid by its core diagram, J. Pure Appl. Algebra, 80 (1992), 237-272.  doi: 10.1016/0022-4049(92)90145-6.
    [10] R. Brown and G. H. Mosa, Double categories, $2$-categories, thin structures and connections, Theory Appl. Categ., 5 (1999), 163-175. 
    [11] R. Brown and O. Mucuk, The monodromy groupoid of a Lie groupoid, Cahier Top. Géom. Diff. Cat., 36 (1995), 345-369. 
    [12] R. Brown and O. Mucuk, Foliations, locally Lie groupoids and holonomy, Cahier Top. Géom. Diff. Cat, 37 (1995), 61-71. 
    [13] R. Brown and C. B. Spencer, Double groupoids and crossed modules, Cahiers Topologie Géom. Differentielle, 17 (1976), 343-362. 
    [14] C. Ehresmann,, Structures feuilletées, Proc. 5th Conf. Canadian Math. Congress Montreal 1961, Oeuvres Compl etes II-2,563–624.
    [15] A. Ehresmann and C. Ehresmann, Multiple functors. IV: Monoidal closed structure on $Cat_n$, Cahiers Top. Géom. Différentielle, 20 (1979), 59-104. 
    [16] C. Ehresmann, Catégories structurées, Ann. Sci. École Norm. Sup., 80 (1963), 349-426. 
    [17] A. Haefliger, Groupoïdes d'holonomie et classifiant, Astérisque, 116 (1984), 70-97. 
    [18] J. Kubarski,, Local and nice structures of the groupoid of equivalence relation.,
    [19] K. C. H. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London Mathematical Society, Lecture Note Series, 124, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511661839.
    [20] K. C. H. Mackenzie, Double Lie algebroids and second order geometry, Advances in Mathematics, 96 (1992), 180-239.  doi: 10.1016/0001-8708(92)90036-K.
    [21] J. Phillips, The holonomic imperative and the homotopy groupoid of foliated manifolds, Rocky Mountain Journal of Maths, 17 (1987), 151-165.  doi: 10.1216/RMJ-1987-17-1-151.
    [22] J. Pradines, Théorie de Lie pour les groupoides différentiables, Relation entre propriétes locales et globales, C. R. Acad. Sci. Paris, 263 (1966), 907-910. 
    [23] J. Pradines, Géometrie différentielle au-dessus d'un groupoïde, C. R. Acad. sci. Paris, Sér. A, 266 (1967), 1194-1196. 
    [24] J. Pradines,, Fibres vectoriels doubles et calculs des jets non holonomes, Notes Polycopiées, (1974).
    [25] J. H. C. Whitehead, On operators in relative homotopy groups, Ann. of Math., 49 (1948), 610-640.  doi: 10.2307/1969048.
    [26] J. H. C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc., 55 (1949), 453-996.  doi: 10.1090/S0002-9904-1949-09213-3.
    [27] H. E. Winkelnkemper, The graph of a foliation, Ann. Global. Anal. Geom., 1 (1985), 51–75. doi: 10.1007/BF02329732.
  • 加载中

Article Metrics

HTML views(815) PDF downloads(130) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint