 Previous Article
 JIMO Home
 This Issue

Next Article
On the image space analysis for vector variational inequalities
Airfoil design via optimal control theory
1.  Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China, China 
2.  Department of Mathematics and Statistics, Curtin University of Technology, Perth, Australia 
[1] 
Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631642. doi: 10.3934/jimo.2013.9.631 
[2] 
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595628. doi: 10.3934/mcrf.2016017 
[3] 
Thierry Horsin, Peter I. Kogut. Optimal $L^2$control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 7396. doi: 10.3934/mcrf.2015.5.73 
[4] 
Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by NavierStokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495516. doi: 10.3934/eect.2013.2.495 
[5] 
Murat Uzunca, Ayşe SarıaydınFilibelioǧlu. Adaptive discontinuous galerkin finite elements for advective AllenCahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269281. doi: 10.3934/naco.2020025 
[6] 
Fredrik Hellman, Patrick Henning, Axel Målqvist. Multiscale mixed finite elements. Discrete & Continuous Dynamical Systems  S, 2016, 9 (5) : 12691298. doi: 10.3934/dcdss.2016051 
[7] 
ZhenZhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on HamiltonJacobiBellman equation. Electronic Research Archive, 2021, 29 (5) : 34293447. doi: 10.3934/era.2021046 
[8] 
Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936944. doi: 10.3934/proc.2015.0936 
[9] 
Bin Li, Kok Lay Teo, ChengChew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems  B, 2011, 16 (4) : 11011117. doi: 10.3934/dcdsb.2011.16.1101 
[10] 
Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643660. doi: 10.3934/ipi.2007.1.643 
[11] 
Ruwu Xiao, Geng Li, Yuping Zhao. On the design of full duplex wireless system with chaotic sequences. Discrete & Continuous Dynamical Systems  S, 2019, 12 (4&5) : 783793. doi: 10.3934/dcdss.2019052 
[12] 
Simone Göttlich, Patrick Schindler. Optimal inflow control of production systems with finite buffers. Discrete & Continuous Dynamical Systems  B, 2015, 20 (1) : 107127. doi: 10.3934/dcdsb.2015.20.107 
[13] 
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control & Related Fields, 2016, 6 (1) : 95112. doi: 10.3934/mcrf.2016.6.95 
[14] 
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95116. doi: 10.3934/eect.2018006 
[15] 
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449461. doi: 10.3934/eect.2016013 
[16] 
Hai Huyen Dam, WingKuen Ling. Optimal design of finite precision and infinite precision nonuniform cosine modulated filter bank. Journal of Industrial & Management Optimization, 2019, 15 (1) : 97112. doi: 10.3934/jimo.2018034 
[17] 
Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measurevalued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411449. doi: 10.3934/mcrf.2018017 
[18] 
Eric Dubach, Robert Luce, JeanMarie Thomas. PseudoConform Polynomial Lagrange Finite Elements on Quadrilaterals and Hexahedra. Communications on Pure & Applied Analysis, 2009, 8 (1) : 237254. doi: 10.3934/cpaa.2009.8.237 
[19] 
Zhangxin Chen, Qiaoyuan Jiang, Yanli Cui. Lockingfree nonconforming finite elements for planar linear elasticity. Conference Publications, 2005, 2005 (Special) : 181189. doi: 10.3934/proc.2005.2005.181 
[20] 
Fabio Bagagiolo. Optimal control of finite horizon type for a multidimensional delayed switching system. Discrete & Continuous Dynamical Systems  B, 2005, 5 (2) : 239264. doi: 10.3934/dcdsb.2005.5.239 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]