July  2005, 1(3): 305-314. doi: 10.3934/jimo.2005.1.305

Decision making of transportation plan, a bilevel transportation problem approach

1. 

Renmin University of China, Beijing 100872, China

2. 

Corresponding author. Department of Mathematics, City University of Hong Kong, Hong Kong, China

Received  October 2004 Revised  March 2005 Published  July 2005

As we know, the transportation plan plays a very important role in reducing cost and time of shipping products. In this paper, we propose a bilevel transportation model to help decision makers to work more efficiently. We propose an exact penalty method for the bilevel transportation model, then test it by using both randomly generated test problems and problems with practical data which are collected in a very large company in China. These results of numerical tests show that the exact penalty method is very efficient in solving both kinds of problems.
Citation: G.S. Liu, J.Z. Zhang. Decision making of transportation plan, a bilevel transportation problem approach. Journal of Industrial and Management Optimization, 2005, 1 (3) : 305-314. doi: 10.3934/jimo.2005.1.305
[1]

Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty method-based equilibrium point approach for solving the linear bilevel multiobjective programming problem. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1743-1755. doi: 10.3934/dcdss.2020102

[2]

Yibing Lv, Zhongping Wan. Linear bilevel multiobjective optimization problem: Penalty approach. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1213-1223. doi: 10.3934/jimo.2018092

[3]

Deqiang Qu, Youlin Shang, Dan Wu, Guanglei Sun. Filled function method to optimize supply chain transportation costs. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021115

[4]

Paulina Ávila-Torres, Fernando López-Irarragorri, Rafael Caballero, Yasmín Ríos-Solís. The multimodal and multiperiod urban transportation integrated timetable construction problem with demand uncertainty. Journal of Industrial and Management Optimization, 2018, 14 (2) : 447-472. doi: 10.3934/jimo.2017055

[5]

Gbeminiyi John Oyewole, Olufemi Adetunji. Solving the facility location and fixed charge solid transportation problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1557-1575. doi: 10.3934/jimo.2020034

[6]

David Kinderlehrer, Adrian Tudorascu. Transport via mass transportation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 311-338. doi: 10.3934/dcdsb.2006.6.311

[7]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial and Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[8]

Maolin Cheng, Zhun Cheng. A novel simultaneous grey model parameter optimization method and its application to predicting private car ownership and transportation economy. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022081

[9]

Ali Hadi, Saeid Mehrabian. A two-stage data envelopment analysis approach to solve extended transportation problem with non-homogenous costs. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022006

[10]

Cheng Ma, Xun Li, Ka-Fai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semi-infinite programming problems. Journal of Industrial and Management Optimization, 2012, 8 (3) : 705-726. doi: 10.3934/jimo.2012.8.705

[11]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

[12]

Lorenzo Brasco, Filippo Santambrogio. An equivalent path functional formulation of branched transportation problems. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 845-871. doi: 10.3934/dcds.2011.29.845

[13]

Gershon Wolansky. Limit theorems for optimal mass transportation and applications to networks. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 365-374. doi: 10.3934/dcds.2011.30.365

[14]

Jaimie W. Lien, Vladimir V. Mazalov, Jie Zheng. Pricing equilibrium of transportation systems with behavioral commuters. Journal of Dynamics and Games, 2020, 7 (4) : 335-350. doi: 10.3934/jdg.2020026

[15]

Ş. İlker Birbil, Kerem Bülbül, J. B. G. Frenk, H. M. Mulder. On EOQ cost models with arbitrary purchase and transportation costs. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1211-1245. doi: 10.3934/jimo.2015.11.1211

[16]

Jun Pei, Panos M. Pardalos, Xinbao Liu, Wenjuan Fan, Shanlin Yang, Ling Wang. Coordination of production and transportation in supply chain scheduling. Journal of Industrial and Management Optimization, 2015, 11 (2) : 399-419. doi: 10.3934/jimo.2015.11.399

[17]

Yue Zheng, Zhongping Wan, Shihui Jia, Guangmin Wang. A new method for strong-weak linear bilevel programming problem. Journal of Industrial and Management Optimization, 2015, 11 (2) : 529-547. doi: 10.3934/jimo.2015.11.529

[18]

Massimiliano Caramia, Giovanni Storchi. Evaluating the effects of parking price and location in multi-modal transportation networks. Networks and Heterogeneous Media, 2006, 1 (3) : 441-465. doi: 10.3934/nhm.2006.1.441

[19]

A. Daducci, A. Marigonda, G. Orlandi, R. Posenato. Neuronal Fiber--tracking via optimal mass transportation. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2157-2177. doi: 10.3934/cpaa.2012.11.2157

[20]

Eva Barrena, Alicia De-Los-Santos, Gilbert Laporte, Juan A. Mesa. Transferability of collective transportation line networks from a topological and passenger demand perspective. Networks and Heterogeneous Media, 2015, 10 (1) : 1-16. doi: 10.3934/nhm.2015.10.1

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (135)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]