
Previous Article
Identification of Lamé parameters in linear elasticity: a fixed point approach
 JIMO Home
 This Issue

Next Article
Optimal parameter selection in support vector machines
Linear fractional vector optimization problems with many components in the solution sets
1.  HanoiAmsterdam High School, Hanoi, Vietnam 
2.  Institute of Mathematics, 18 Hoang Quoc Viet Rd., 10307 Hanoi, Vietnam, Vietnam 
[1] 
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems  S, 2021 doi: 10.3934/dcdss.2021023 
[2] 
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689709. doi: 10.3934/ipi.2016017 
[3] 
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems  B, 2021, 26 (5) : 24292440. doi: 10.3934/dcdsb.2020185 
[4] 
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems  A, 2019, 39 (12) : 70317056. doi: 10.3934/dcds.2019243 
[5] 
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems  B, 2013, 18 (7) : 19951997. doi: 10.3934/dcdsb.2013.18.1995 
[6] 
Shanjian Tang, Fu Zhang. Pathdependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 55215553. doi: 10.3934/dcds.2015.35.5521 
[7] 
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399413. doi: 10.3934/jimo.2007.3.399 
[8] 
Zhiming Guo, ZhiChun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a nonlocal differential equation with homogeneous Dirichlet boundary conditionA nonmonotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 18251838. doi: 10.3934/cpaa.2012.11.1825 
[9] 
Andrea Scapin. Electrocommunication for weakly electric fish. Inverse Problems & Imaging, 2020, 14 (1) : 97115. doi: 10.3934/ipi.2019065 
[10] 
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313345. doi: 10.3934/mbe.2010.7.313 
[11] 
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems  S, 2008, 1 (3) : 365404. doi: 10.3934/dcdss.2008.1.365 
[12] 
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACLhomeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 13911397. doi: 10.3934/cpaa.2010.9.1391 
[13] 
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems  A, 2011, 31 (1) : 2534. doi: 10.3934/dcds.2011.31.25 
[14] 
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems  B, 2013, 18 (7) : 19091927. doi: 10.3934/dcdsb.2013.18.1909 
[15] 
JeanFrançois Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141154. doi: 10.3934/amc.2010.4.141 
[16] 
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 
[17] 
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 
[18] 
Ardeshir Ahmadi, Hamed DavariArdakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359377. doi: 10.3934/naco.2017023 
[19] 
María J. GarridoAtienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems  B, 2016, 21 (9) : 30753094. doi: 10.3934/dcdsb.2016088 
[20] 
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems  S, 2021 doi: 10.3934/dcdss.2021022 
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]