
Previous Article
GaussNewtononmanifold for pose estimation
 JIMO Home
 This Issue

Next Article
Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization
Two approaches toward constrained vector optimization and identity of the solutions
1.  Université de la Vallée d'Aoste, Facoltà di Scienze Economiche, 11100 Aosta, Italy 
2.  Technical University of Varna, Department of Mathematics, 9010 Varna, Bulgaria 
3.  University of Insubria, Department of Economics, 21100 Varese, Italy 
[1] 
Ardeshir Ahmadi, Hamed DavariArdakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359377. doi: 10.3934/naco.2017023 
[2] 
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313345. doi: 10.3934/mbe.2010.7.313 
[3] 
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533557. doi: 10.3934/cpaa.2009.8.533 
[4] 
Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2021027 
[5] 
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321332. doi: 10.3934/naco.2020028 
[6] 
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399413. doi: 10.3934/jimo.2007.3.399 
[7] 
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems  B, 2013, 18 (7) : 19091927. doi: 10.3934/dcdsb.2013.18.1909 
[8] 
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems  S, 2011, 4 (1) : 209222. doi: 10.3934/dcdss.2011.4.209 
[9] 
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of CuckerSmale type. Kinetic & Related Models, 2011, 4 (1) : 116. doi: 10.3934/krm.2011.4.1 
[10] 
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91104. doi: 10.3934/naco.2012.2.91 
[11] 
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 13631386. doi: 10.3934/cpaa.2012.11.1363 
[12] 
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307320. doi: 10.3934/naco.2020027 
[13] 
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 
[14] 
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integrodifferential inclusions of Sobolevtype with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271296. doi: 10.3934/eect.2020066 
[15] 
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multistep spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377387. doi: 10.3934/naco.2018024 
[16] 
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 
[17] 
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, GerhardWilhelm Weber. A robust optimization model for sustainable and resilient closedloop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221253. doi: 10.3934/naco.2020023 
[18] 
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems  B, 2020, 25 (11) : 42114220. doi: 10.3934/dcdsb.2020094 
[19] 
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems  B, 2020, 25 (3) : 11291139. doi: 10.3934/dcdsb.2019212 
[20] 
Michael Grinfeld, Amy NovickCohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems  A, 2006, 15 (4) : 10891117. doi: 10.3934/dcds.2006.15.1089 
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]