• Previous Article
    Good programs in the RSS model without concavity of a utility function
  • JIMO Home
  • This Issue
  • Next Article
    A novel approach in uncertain programming part II: a class of constrained nonlinear programming problems with interval objective functions
October  2006, 2(4): 387-398. doi: 10.3934/jimo.2006.2.387

Multiple workshift options in aggregrate production Multiple workshift options in aggregrate production

1. 

Graduate School of Management, Kent State University, Kent, Ohio, United States

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

3. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

Received  March 2006 Revised  August 2006 Published  October 2006

Second and third shift considerations are important for production planning and scheduling in most manufacturing facilities. A careful literature survey revealed that multiple workshift considerations have not been previously discussed for general aggregate production planning models. In this paper, we propose a mixed integer logic for permitting the opening or closing of second and third shifts of production within a generic model having linear and quadratic cost components. We illustrate the results of the model on a hypothetical data set. The model permits different costs for opening and closing the extra shifts and provides for a minimum required work force size for the extra shifts.
Citation: M. D. Troutt, S. H. Hou, W. K. Pang. Multiple workshift options in aggregrate production Multiple workshift options in aggregrate production. Journal of Industrial & Management Optimization, 2006, 2 (4) : 387-398. doi: 10.3934/jimo.2006.2.387
[1]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[4]

Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021027

[5]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[6]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[7]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[8]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[9]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[10]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[11]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]