October  2006, 2(4): 425-434. doi: 10.3934/jimo.2006.2.425

A comparison of simple tests for accuracy of approximate solutions to nonlinear systems with uncertain data

1. 

Institut für Angewandte und Numerische Mathematik, Universität Karlsruhe, 76128 Karlsruhe, Germany, Germany

Received  January 2006 Revised  August 2006 Published  October 2006

Recently, Frommer, Lang, and Schnurr [4] presented an existence test, which can be used to prove the existence of a zero of a continuous mapping from $\R^n $ to $\R^n$. The existence test relies on Miranda's theorem and was shown to be more powerful than the Moore test [10]. In this paper, we show that under additional assumptions, the Moore and Kioustelidis test [11] can be applied successfully in more cases than that of Frommer, Lang, and Schnurr [4]. For instance, these assumptions are fulfilled concerning the linear complementarity problem with interval data.
Citation: Uwe Schäfer, Marco Schnurr. A comparison of simple tests for accuracy of approximate solutions to nonlinear systems with uncertain data. Journal of Industrial & Management Optimization, 2006, 2 (4) : 425-434. doi: 10.3934/jimo.2006.2.425
[1]

Armengol Gasull, Víctor Mañosa. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 651-670. doi: 10.3934/dcdsb.2019259

[2]

Louis Caccetta, Ian Loosen, Volker Rehbock. Computational aspects of the optimal transit path problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 95-105. doi: 10.3934/jimo.2008.4.95

[3]

Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313

[4]

Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

[5]

Wei-Zhe Gu, Li-Yong Lu. The linear convergence of a derivative-free descent method for nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 531-548. doi: 10.3934/jimo.2016030

[6]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial & Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[7]

Jie Zhang, Yue Wu, Liwei Zhang. A class of smoothing SAA methods for a stochastic linear complementarity problem. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 145-156. doi: 10.3934/naco.2012.2.145

[8]

Yujing Wang, Changjun Yu, Kok Lay Teo. A new computational strategy for optimal control problem with a cost on changing control. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 339-364. doi: 10.3934/naco.2016016

[9]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[10]

José A. Cañizo, Chuqi Cao, Josephine Evans, Havva Yoldaş. Hypocoercivity of linear kinetic equations via Harris's Theorem. Kinetic & Related Models, 2020, 13 (1) : 97-128. doi: 10.3934/krm.2020004

[11]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[12]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[13]

Nguyen Dinh Cong, Doan Thai Son, Stefan Siegmund, Hoang The Tuan. An instability theorem for nonlinear fractional differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3079-3090. doi: 10.3934/dcdsb.2017164

[14]

Li-Xia Liu, Sanyang Liu, Chun-Feng Wang. Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesian $P$/$P_0$-property. Journal of Industrial & Management Optimization, 2011, 7 (1) : 53-66. doi: 10.3934/jimo.2011.7.53

[15]

Nur Aidya Hanum Aizam, Louis Caccetta. Computational models for timetabling problem. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 269-285. doi: 10.3934/naco.2014.4.269

[16]

C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7

[17]

Yu-Lin Chang, Jein-Shan Chen, Jia Wu. Proximal point algorithm for nonlinear complementarity problem based on the generalized Fischer-Burmeister merit function. Journal of Industrial & Management Optimization, 2013, 9 (1) : 153-169. doi: 10.3934/jimo.2013.9.153

[18]

Elena Goncharova, Maxim Staritsyn. On BV-extension of asymptotically constrained control-affine systems and complementarity problem for measure differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1061-1070. doi: 10.3934/dcdss.2018061

[19]

Evelyn Lunasin, Edriss S. Titi. Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study. Evolution Equations & Control Theory, 2017, 6 (4) : 535-557. doi: 10.3934/eect.2017027

[20]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]