-
Previous Article
Some remarks on a successive projection sequence
- JIMO Home
- This Issue
-
Next Article
A comparison of simple tests for accuracy of approximate solutions to nonlinear systems with uncertain data
Global impulsive optimal control computation
1. | Department of Mathematics, Chongqing Normal University, Chongqing, China |
2. | Department of Mathematics and Statistics, Curtin University of Technology, Perth |
[1] |
Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1845-1865. doi: 10.3934/dcdss.2020109 |
[2] |
Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control and Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185 |
[3] |
Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011 |
[4] |
Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559 |
[5] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial and Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[6] |
Térence Bayen, Alain Rapaport, Fatima-Zahra Tani. Optimal periodic control for scalar dynamics under integral constraint on the input. Mathematical Control and Related Fields, 2020, 10 (3) : 547-571. doi: 10.3934/mcrf.2020010 |
[7] |
Zhen-Zhen Tao, Bing Sun. Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021220 |
[8] |
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895 |
[9] |
Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial and Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401 |
[10] |
Zhen-Zhen Tao, Bing Sun. Space-time spectral methods for a fourth-order parabolic optimal control problem in three control constraint cases. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022080 |
[11] |
Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1915-1934. doi: 10.3934/jimo.2021049 |
[12] |
Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129 |
[13] |
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial and Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485 |
[14] |
Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305 |
[15] |
Jingzhen Liu, Ka-Fai Cedric Yiu, Kok Lay Teo. Optimal investment-consumption problem with constraint. Journal of Industrial and Management Optimization, 2013, 9 (4) : 743-768. doi: 10.3934/jimo.2013.9.743 |
[16] |
Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022 |
[17] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[18] |
Xilu Wang, Xiaoliang Cheng. Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2021064 |
[19] |
M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223 |
[20] |
Zhen-Zhen Tao, Bing Sun. Error estimates for spectral approximation of flow optimal control problem with $ L^2 $-norm control constraint. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022030 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]