October  2007, 3(4): 619-624. doi: 10.3934/jimo.2007.3.619

A new multimembership clustering method


Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, United States, United States

Received  September 2006 Revised  April 2007 Published  October 2007

Clustering method is one of the most important tools in statistics. In a graph theory model, clustering is the process of finding all dense subgraphs. In this paper, a new clustering method is introduced. One of the most significant differences between the new method and other existing methods is that this new method constructs a much smaller hierarchical tree, which clearly highlights meaningful clusters. Another important feature of the new method is the feature of overlapping clustering or multi-membership. The property of multi-membership is a concept that has recently received increased attention in the literature (Palla, Derényi, Farkas and Vicsek, (Nature 2005); Pereira-Leal, Enright and Ouzounis, (Bioinformatics, 2004); Futschik and Carlisle, (J. Bioinformatics and Computational Biology 2005))
Citation: Yongbin Ou, Cun-Quan Zhang. A new multimembership clustering method. Journal of Industrial and Management Optimization, 2007, 3 (4) : 619-624. doi: 10.3934/jimo.2007.3.619

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005


Baolan Yuan, Wanjun Zhang, Yubo Yuan. A Max-Min clustering method for $k$-means algorithm of data clustering. Journal of Industrial and Management Optimization, 2012, 8 (3) : 565-575. doi: 10.3934/jimo.2012.8.565


Elissar Nasreddine. Two-dimensional individual clustering model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 307-316. doi: 10.3934/dcdss.2014.7.307


Daniel Mckenzie, Steven Damelin. Power weighted shortest paths for clustering Euclidean data. Foundations of Data Science, 2019, 1 (3) : 307-327. doi: 10.3934/fods.2019014


Michael Herty, Lorenzo Pareschi, Giuseppe Visconti. Mean field models for large data–clustering problems. Networks and Heterogeneous Media, 2020, 15 (3) : 463-487. doi: 10.3934/nhm.2020027


Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647


Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems and Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025


Jinyuan Zhang, Aimin Zhou, Guixu Zhang, Hu Zhang. A clustering based mate selection for evolutionary optimization. Big Data & Information Analytics, 2017, 2 (1) : 77-85. doi: 10.3934/bdia.2017010


Guojun Gan, Qiujun Lan, Shiyang Sima. Scalable clustering by truncated fuzzy $c$-means. Big Data & Information Analytics, 2016, 1 (2&3) : 247-259. doi: 10.3934/bdia.2016007


Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial and Management Optimization, 2015, 11 (3) : 921-932. doi: 10.3934/jimo.2015.11.921


Adela DePavia, Stefan Steinerberger. Spectral clustering revisited: Information hidden in the Fiedler vector. Foundations of Data Science, 2021, 3 (2) : 225-249. doi: 10.3934/fods.2021015


Jia Chen, Ioannis D. Schizas. Multimodal correlations-based data clustering. Foundations of Data Science, 2022  doi: 10.3934/fods.2022011


Pawan Lingras, Farhana Haider, Matt Triff. Fuzzy temporal meta-clustering of financial trading volatility patterns. Big Data & Information Analytics, 2018  doi: 10.3934/bdia.2017018


Guojun Gan, Kun Chen. A soft subspace clustering algorithm with log-transformed distances. Big Data & Information Analytics, 2016, 1 (1) : 93-109. doi: 10.3934/bdia.2016.1.93


Richard L Buckalew. Cell cycle clustering and quorum sensing in a response / signaling mediated feedback model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 867-881. doi: 10.3934/dcdsb.2014.19.867


Jiangchuan Fan, Xinyu Guo, Jianjun Du, Weiliang Wen, Xianju Lu, Brahmani Louiza. Analysis of the clustering fusion algorithm for multi-band color image. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1233-1249. doi: 10.3934/dcdss.2019085


Ruiqi Yang, Dachuan Xu, Yicheng Xu, Dongmei Zhang. An adaptive probabilistic algorithm for online k-center clustering. Journal of Industrial and Management Optimization, 2019, 15 (2) : 565-576. doi: 10.3934/jimo.2018057


Hua Huang, Weiwei Wang, Chengwu Lu, Xiangchu Feng, Ruiqiang He. Side-information-induced reweighted sparse subspace clustering. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1235-1252. doi: 10.3934/jimo.2020019


Gabriel Jouan, Anne Cuzol, Valérie Monbet, Goulven Monnier. Gaussian mixture models for clustering and calibration of ensemble weather forecasts. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022037


Suting Wei, Jun Yang. Clustering phase transition layers with boundary intersection for an inhomogeneous Allen-Cahn equation. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2575-2616. doi: 10.3934/cpaa.2020113

2021 Impact Factor: 1.411


  • PDF downloads (121)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]