
Previous Article
Competition with open source as a public good
 JIMO Home
 This Issue

Next Article
Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems
An implicit programming approach for the road pricing problem with nonadditive route costs
1.  Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto, 6068501, Japan, Japan 
[1] 
Michal Kočvara, Jiří V. Outrata. Inverse truss design as a conic mathematical program with equilibrium constraints. Discrete & Continuous Dynamical Systems  S, 2017, 10 (6) : 13291350. doi: 10.3934/dcdss.2017071 
[2] 
Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial & Management Optimization, 2019, 15 (4) : 17951807. doi: 10.3934/jimo.2018123 
[3] 
Annamaria Barbagallo, Rosalba Di Vincenzo, Stéphane Pia. On strong Lagrange duality for weighted traffic equilibrium problem. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 10971113. doi: 10.3934/dcds.2011.31.1097 
[4] 
Peiyu Li. Solving normalized stationary points of a class of equilibrium problem with equilibrium constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 637646. doi: 10.3934/jimo.2017065 
[5] 
Luis Barreira. Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures. Discrete & Continuous Dynamical Systems, 2006, 16 (2) : 279305. doi: 10.3934/dcds.2006.16.279 
[6] 
Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty methodbased equilibrium point approach for solving the linear bilevel multiobjective programming problem. Discrete & Continuous Dynamical Systems  S, 2020, 13 (6) : 17431755. doi: 10.3934/dcdss.2020102 
[7] 
Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A selfadaptive projectionauxiliary problem method for variational inequalities. Journal of Industrial & Management Optimization, 2013, 9 (1) : 255274. doi: 10.3934/jimo.2013.9.255 
[8] 
Jie Zhang, Shuang Lin, LiWei Zhang. A logexponential regularization method for a mathematical program with general vertical complementarity constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 561577. doi: 10.3934/jimo.2013.9.561 
[9] 
Li Chu, Bo Wang, Jie Zhang, HongWei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with secondorder cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 18631886. doi: 10.3934/jimo.2020050 
[10] 
Chunyang Zhang, Shugong Zhang, Qinghuai Liu. Homotopy method for a class of multiobjective optimization problems with equilibrium constraints. Journal of Industrial & Management Optimization, 2017, 13 (1) : 8192. doi: 10.3934/jimo.2016005 
[11] 
Xiantao Xiao, Jian Gu, Liwei Zhang, Shaowu Zhang. A sequential convex program method to DC program with joint chance constraints. Journal of Industrial & Management Optimization, 2012, 8 (3) : 733747. doi: 10.3934/jimo.2012.8.733 
[12] 
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with secondorder cone constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 118. doi: 10.3934/naco.2012.2.1 
[13] 
Jaimie W. Lien, Vladimir V. Mazalov, Jie Zheng. Pricing equilibrium of transportation systems with behavioral commuters. Journal of Dynamics & Games, 2020, 7 (4) : 335350. doi: 10.3934/jdg.2020026 
[14] 
QiuSheng Qiu. Optimality conditions for vector equilibrium problems with constraints. Journal of Industrial & Management Optimization, 2009, 5 (4) : 783790. doi: 10.3934/jimo.2009.5.783 
[15] 
Ouayl Chadli, Gayatri Pany, Ram N. Mohapatra. Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces. Numerical Algebra, Control & Optimization, 2020, 10 (1) : 7592. doi: 10.3934/naco.2019034 
[16] 
Shaokun Tao, Xianjin Du, Suresh P. Sethi, Xiuli He, Yu Li. Equilibrium decisions on pricing and innovation that impact reference price dynamics. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021157 
[17] 
Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 10911108. doi: 10.3934/jimo.2014.10.1091 
[18] 
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 5165. doi: 10.3934/jimo.2012.8.51 
[19] 
Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial & Management Optimization, 2010, 6 (3) : 453464. doi: 10.3934/jimo.2010.6.453 
[20] 
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209220. doi: 10.3934/naco.2020022 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]