
Previous Article
An extended lifetime measure for telecommunication network
 JIMO Home
 This Issue

Next Article
New adaptive stepsize selections in gradient methods
Wellposedness for parametric vector equilibrium problems with applications
1.  Department of Applied Mathematics, National Sun Yatsen University, Kaohsiung, 80424, Taiwan 
2.  Department of Information Management, Cheng Shiu University, No.840, Chengcing Rd., Niaosong Township, Kaohsiung County 833, Taiwan, R.O.C. 
3.  Department of Mathematics, National Cheng Kung University, Tainan, 701, Taiwan, National Center for Theoretical Sciences, Taiwan 
4.  Department of Mathematics, National Sun Yatsen University, Kaohsiung, Taiwan 80424 
[1] 
NanJing Huang, XianJun Long, ChangWen Zhao. WellPosedness for vector quasiequilibrium problems with applications. Journal of Industrial and Management Optimization, 2009, 5 (2) : 341349. doi: 10.3934/jimo.2009.5.341 
[2] 
M. H. Li, S. J. Li, W. Y. Zhang. LevitinPolyak wellposedness of generalized vector quasiequilibrium problems. Journal of Industrial and Management Optimization, 2009, 5 (4) : 683696. doi: 10.3934/jimo.2009.5.683 
[3] 
Lam Quoc Anh, Pham Thanh Duoc, Tran Quoc Duy. Existence and wellposedness for excess demand equilibrium problems. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021043 
[4] 
Mircea Sofonea, Yibin Xiao. Tykhonov wellposedness of a viscoplastic contact problem^{†}. Evolution Equations and Control Theory, 2020, 9 (4) : 11671185. doi: 10.3934/eect.2020048 
[5] 
C. H. Arthur Cheng, John M. Hong, YingChieh Lin, Jiahong Wu, JuanMing Yuan. Wellposedness of the twodimensional generalized BenjaminBonaMahony equation on the upper half plane. Discrete and Continuous Dynamical Systems  B, 2016, 21 (3) : 763779. doi: 10.3934/dcdsb.2016.21.763 
[6] 
Zhaohui Huo, Boling Guo. The wellposedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387402. doi: 10.3934/dcds.2005.12.387 
[7] 
Hongmei Cao, HaoGuang Li, ChaoJiang Xu, Jiang Xu. Wellposedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829884. doi: 10.3934/krm.2019032 
[8] 
Changyan Li, Hui Li. Wellposedness of the twophase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 56095632. doi: 10.3934/dcds.2021090 
[9] 
Luciano Abadías, Carlos Lizama, Pedro J. Miana, M. Pilar Velasco. On wellposedness of vectorvalued fractional differentialdifference equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 26792708. doi: 10.3934/dcds.2019112 
[10] 
JianWen Peng, XinMin Yang. LevitinPolyak wellposedness of a system of generalized vector variational inequality problems. Journal of Industrial and Management Optimization, 2015, 11 (3) : 701714. doi: 10.3934/jimo.2015.11.701 
[11] 
Xiaoqiang Dai, Shaohua Chen. Global wellposedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete and Continuous Dynamical Systems  S, 2021, 14 (12) : 42014211. doi: 10.3934/dcdss.2021114 
[12] 
Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp wellposedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 487504. doi: 10.3934/cpaa.2018027 
[13] 
Changxing Miao, Bo Zhang. Global wellposedness of the Cauchy problem for nonlinear Schrödingertype equations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 181200. doi: 10.3934/dcds.2007.17.181 
[14] 
Shinya Kinoshita. Wellposedness for the Cauchy problem of the KleinGordonZakharov system in 2D. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 14791504. doi: 10.3934/dcds.2018061 
[15] 
Fujun Zhou, Shangbin Cui. Wellposedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 929943. doi: 10.3934/dcds.2008.21.929 
[16] 
Nobu Kishimoto. Local wellposedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure and Applied Analysis, 2008, 7 (5) : 11231143. doi: 10.3934/cpaa.2008.7.1123 
[17] 
Yuri Trakhinin. On wellposedness of the plasmavacuum interface problem: the case of nonelliptic interface symbol. Communications on Pure and Applied Analysis, 2016, 15 (4) : 13711399. doi: 10.3934/cpaa.2016.15.1371 
[18] 
Isao Kato. Wellposedness for the Cauchy problem of the KleinGordonZakharov system in four and more spatial dimensions. Communications on Pure and Applied Analysis, 2016, 15 (6) : 22472280. doi: 10.3934/cpaa.2016036 
[19] 
Joachim Escher, AncaVoichita Matioc. Wellposedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete and Continuous Dynamical Systems  B, 2011, 15 (3) : 573596. doi: 10.3934/dcdsb.2011.15.573 
[20] 
Boling Guo, Jun Wu. Wellposedness of the initialboundary value problem for the fourthorder nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021205 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]