• Previous Article
    Comments on ''Generalized support set invariancy sensitivity analysis in linear optimization''
  • JIMO Home
  • This Issue
  • Next Article
    Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property
July  2008, 4(3): 581-609. doi: 10.3934/jimo.2008.4.581

The framework of axiomatics fuzzy sets based fuzzy classifiers

1. 

Research Center of Information and Control, Dalian University of Technology, Dalian, 116024, China

2. 

Dept. of Computing, Curtin University of Technology, Bentley, WA, 6102, Australia

Received  November 2006 Revised  March 2008 Published  July 2008

In this paper we will propose a new classifier design based on the AFS fuzzy theory. First, we will briefly review the current researches in data classification based on fuzzy and rough set theories and then present the AFS framework. Second, we will present new membership functions for fuzzy sets with their logic operations in the AFS framework and then tackle some theoretical and computational problems related to classifier design. Third, we will develop a new approach for fuzzy classifier design based on the proposed membership functions and their logic operations. Finally, a well-known example is used to illustrate its effectiveness. The advantage of this classifier is in two-folds. One is that it can mimic the human reasoning comprehensively and offers a far more flexible and effective way for the study of large-scale intelligent systems. The other is its simplicity in methodology and mathematical beauty in fuzzy theory.
Citation: Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial & Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581
[1]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[2]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[3]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[4]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[5]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[6]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]