October  2008, 4(4): 685-696. doi: 10.3934/jimo.2008.4.685

On the sensitivity of desirability functions for multiresponse optimization


Department of Industrial Engineering, ISIK University, Istanbul 34980, Turkey

Received  May 2007 Revised  June 2008 Published  November 2008

Desirability functions have been one of the most important multiresponse optimization technique since the early eighties. Main reasons for this popularity might be counted as the convenience of the implementation of the method and it's availability in many experimental design software packages. Technique itself involves somehow subjective parameters such as the importance coefficients between response characteristics that are used to calculate overall desirability, weights used in determining the shape of each individual response and the size of the specification band of the response. However, the impact of these sensitive parameters on the solution set is mostly uninvestigated. This paper proposes a procedure to analyze the sensitivity of the important characteristic parameters of desirability functions and their impact on pareto-optimal solution set. The proposed procedure uses the experimental design tools on the solution space and estimates a prediction equation on the overall desirability to identify the sensitive parameters. For illustration, a classical desirability example is selected from the literature and results are given along with the discussion.
Citation: Caglar S. Aksezer. On the sensitivity of desirability functions for multiresponse optimization. Journal of Industrial & Management Optimization, 2008, 4 (4) : 685-696. doi: 10.3934/jimo.2008.4.685

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034


Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190


Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225


Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023


Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399


Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327


Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024


Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1


Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367


Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

2019 Impact Factor: 1.366


  • PDF downloads (93)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]