
Previous Article
A power penalty approach to american option pricing with jump diffusion processes
 JIMO Home
 This Issue

Next Article
A selection problem for a constrained linear regression model
Sequential characterization of solutions in convex composite programming and applications to vector optimization
1.  Faculty of Mathematics, Chemnitz University of Technology, D09107 Chemnitz, Germany, Germany 
2.  Faculty of Mathematics and Computer Sciences, BabeşBolyai University, ClujNapoca, 1 Kogãlniceanu Str., 400084 ClujNapoca, Romania 
[1] 
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533557. doi: 10.3934/cpaa.2009.8.533 
[2] 
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399413. doi: 10.3934/jimo.2007.3.399 
[3] 
Andrea Scapin. Electrocommunication for weakly electric fish. Inverse Problems & Imaging, 2020, 14 (1) : 97115. doi: 10.3934/ipi.2019065 
[4] 
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313345. doi: 10.3934/mbe.2010.7.313 
[5] 
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689709. doi: 10.3934/ipi.2016017 
[6] 
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems  B, 2013, 18 (7) : 19091927. doi: 10.3934/dcdsb.2013.18.1909 
[7] 
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems  B, 2021, 26 (5) : 24292440. doi: 10.3934/dcdsb.2020185 
[8] 
Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297320. doi: 10.3934/eect.2020067 
[9] 
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems  S, 2011, 4 (1) : 209222. doi: 10.3934/dcdss.2011.4.209 
[10] 
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91104. doi: 10.3934/naco.2012.2.91 
[11] 
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307320. doi: 10.3934/naco.2020027 
[12] 
Ardeshir Ahmadi, Hamed DavariArdakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359377. doi: 10.3934/naco.2017023 
[13] 
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020378 
[14] 
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multistep spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377387. doi: 10.3934/naco.2018024 
[15] 
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 
[16] 
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321332. doi: 10.3934/naco.2020028 
[17] 
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, GerhardWilhelm Weber. A robust optimization model for sustainable and resilient closedloop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221253. doi: 10.3934/naco.2020023 
[18] 
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475485. doi: 10.3934/cpaa.2005.4.475 
[19] 
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810817. doi: 10.3934/proc.2009.2009.810 
[20] 
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems  A, 2013, 33 (1) : 277282. doi: 10.3934/dcds.2013.33.277 
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]