
Previous Article
Bounds on delay start LPT algorithm for scheduling on two identical machines in the $l_p$ norm
 JIMO Home
 This Issue

Next Article
A power penalty approach to american option pricing with jump diffusion processes
On maximizing the expected terminal utility by investment and reinsurance
1.  School of Mathematics and Computer Sciences, Anhui Normal University, Wuhu, Anhui, 241003, China 
2.  School of Finance and Statistics, East China Normal University, Shanghai, 200241, China 
3.  School of Finance and Statistics,, East China Normal University, Shanghai, 200241, China 
[1] 
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431447. doi: 10.3934/ipi.2019021 
[2] 
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 
[3] 
Shanjian Tang, Fu Zhang. Pathdependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 55215553. doi: 10.3934/dcds.2015.35.5521 
[4] 
F.J. Herranz, J. de Lucas, C. Sardón. JacobiLie systems: Fundamentals and lowdimensional classification. Conference Publications, 2015, 2015 (special) : 605614. doi: 10.3934/proc.2015.0605 
[5] 
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a onesided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247257. doi: 10.3934/proc.2013.2013.247 
[6] 
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 13871406. doi: 10.3934/cpaa.2018068 
[7] 
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 48174838. doi: 10.3934/cpaa.2020213 
[8] 
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437446. doi: 10.3934/proc.2013.2013.437 
[9] 
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonaldiffusion equation. Discrete & Continuous Dynamical Systems  S, 2016, 9 (1) : 109123. doi: 10.3934/dcdss.2016.9.109 
[10] 
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems  A, 2011, 31 (1) : 2534. doi: 10.3934/dcds.2011.31.25 
[11] 
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems  B, 2021, 26 (5) : 24412450. doi: 10.3934/dcdsb.2020186 
[12] 
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 13091333. doi: 10.3934/cpaa.2016.15.1309 
[13] 
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems  A, 2017, 37 (11) : 59435977. doi: 10.3934/dcds.2017258 
[14] 
Murat Uzunca, Ayşe SarıaydınFilibelioǧlu. Adaptive discontinuous galerkin finite elements for advective AllenCahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269281. doi: 10.3934/naco.2020025 
[15] 
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Kleingordon equation. Discrete & Continuous Dynamical Systems  S, 2021, 14 (5) : 16491672. doi: 10.3934/dcdss.2020448 
[16] 
Jiaquan Liu, Xiangqing Liu, ZhiQiang Wang. Signchanging solutions for a parameterdependent quasilinear equation. Discrete & Continuous Dynamical Systems  S, 2021, 14 (5) : 17791799. doi: 10.3934/dcdss.2020454 
[17] 
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predatorprey equations. Discrete & Continuous Dynamical Systems  B, 2020, 25 (1) : 117139. doi: 10.3934/dcdsb.2019175 
[18] 
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the halfline. Discrete & Continuous Dynamical Systems  B, 2010, 14 (4) : 15111535. doi: 10.3934/dcdsb.2010.14.1511 
[19] 
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 
[20] 
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a porescale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems  B, 2021, 26 (5) : 24512477. doi: 10.3934/dcdsb.2020190 
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]