January  2009, 5(1): 153-159. doi: 10.3934/jimo.2009.5.153

$H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach

1. 

Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845, Australia

2. 

Department of Mathematics and Statistics, Curtin University, G.P.O. Box U1987, Perth, WA 6845

Received  March 2008 Revised  November 2008 Published  December 2008

This paper studies $H_\infty$ optimal control problems for a class of impulsive dynamical systems with norm-bounded time-varying uncertainty. By using a linear matrix inequality approach, some sufficient conditions are established to ensure both internally asymptotical stability and $H_\infty$ optimal performance of the impulsive closed-loop system. Moreover, based on the stability criteria, a linear time-invariant stabilizing control law is designed. Finally, a numerical example is presented to illustrate the effectiveness of our results.
Citation: Honglei Xu, Kok Lay Teo. $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach. Journal of Industrial and Management Optimization, 2009, 5 (1) : 153-159. doi: 10.3934/jimo.2009.5.153
[1]

M. S. Mahmoud, P. Shi, Y. Shi. $H_\infty$ and robust control of interconnected systems with Markovian jump parameters. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 365-384. doi: 10.3934/dcdsb.2005.5.365

[2]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 197-212. doi: 10.3934/dcdss.2021036

[3]

Ramalingam Sakthivel, Palanisamy Selvaraj, Yeong-Jae Kim, Dong-Hoon Lee, Oh-Min Kwon, Rathinasamy Sakthivel. Robust $ H_\infty $ resilient event-triggered control design for T-S fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022028

[4]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial and Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[5]

Li-Min Wang, Jing-Xian Yu, Jia Shi, Fu-Rong Gao. Delay-range dependent $H_\infty$ control for uncertain 2D-delayed systems. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 11-23. doi: 10.3934/naco.2015.5.11

[6]

Canghua Jiang, Dongming Zhang, Chi Yuan, Kok Ley Teo. An active set solver for constrained $ H_\infty $ optimal control problems with state and input constraints. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 135-157. doi: 10.3934/naco.2021056

[7]

Liqiang Jin, Yanyan Yin, Kok Lay Teo, Fei Liu. Event-triggered mixed $ H_\infty $ and passive control for Markov jump systems with bounded inputs. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1343-1355. doi: 10.3934/jimo.2020024

[8]

Junlin Xiong, Wenjie Liu. $ H_{\infty} $ observer-based control for large-scale systems with sparse observer communication network. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 331-343. doi: 10.3934/naco.2020005

[9]

Zhaoxia Duan, Jinling Liang, Zhengrong Xiang. $ H_{\infty} $ control for continuous-discrete systems in T-S fuzzy model with finite frequency specifications. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022064

[10]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[11]

Zhong-Qiang Wu, Xi-Bo Zhao. Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1565-1577. doi: 10.3934/jimo.2018021

[12]

C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial and Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435

[13]

Xingyue Liang, Jianwei Xia, Guoliang Chen, Huasheng Zhang, Zhen Wang. $ \mathcal{H}_{\infty} $ control for fuzzy markovian jump systems based on sampled-data control method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1329-1343. doi: 10.3934/dcdss.2020368

[14]

Alberto Bressan. Impulsive control of Lagrangian systems and locomotion in fluids. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 1-35. doi: 10.3934/dcds.2008.20.1

[15]

Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989

[16]

Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial and Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591

[17]

Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164

[18]

Evgeny I. Veremey, Vladimir V. Eremeev. SISO H-Optimal synthesis with initially specified structure of control law. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 121-138. doi: 10.3934/naco.2017009

[19]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control and Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[20]

Peng Cheng, Feng Pan, Yanyan Yin, Song Wang. Probabilistic robust anti-disturbance control of uncertain systems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2441-2450. doi: 10.3934/jimo.2020076

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]