-
Previous Article
A study with neighborhood searches to deal with multiobjective unconstrained permutation problems
- JIMO Home
- This Issue
-
Next Article
Preface
Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems
1. | Dto. de Computación, Fac. de Ciencias Exactas y Naturales. UBA, Pabellón 1, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina |
2. | Departamento de Matemática, Fac. de Ciencias Exactas. UNLP, P.O. Box 172. La Plata,1900, Argentina |
3. | Departamento de C. Básicas, Fac. de Ingeniería. UNLP, La Plata, 1900, Argentina |
[1] |
Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001 |
[2] |
JaEun Ku. Maximum norm error estimates for Div least-squares method for Darcy flows. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1305-1318. doi: 10.3934/dcds.2010.26.1305 |
[3] |
Mila Nikolova. Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Problems and Imaging, 2008, 2 (1) : 133-149. doi: 10.3934/ipi.2008.2.133 |
[4] |
Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti. Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4213-4225. doi: 10.3934/cpaa.2020189 |
[5] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[6] |
Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489 |
[7] |
Hsueh-Chen Lee, Hyesuk Lee. An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive, 2021, 29 (4) : 2755-2770. doi: 10.3934/era.2021012 |
[8] |
Yun Cai, Song Li. Convergence and stability of iteratively reweighted least squares for low-rank matrix recovery. Inverse Problems and Imaging, 2017, 11 (4) : 643-661. doi: 10.3934/ipi.2017030 |
[9] |
Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial and Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057 |
[10] |
Zhou Sheng, Gonglin Yuan, Zengru Cui, Xiabin Duan, Xiaoliang Wang. An adaptive trust region algorithm for large-residual nonsmooth least squares problems. Journal of Industrial and Management Optimization, 2018, 14 (2) : 707-718. doi: 10.3934/jimo.2017070 |
[11] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
[12] |
Sihem Guerarra. Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation AXA*=B. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 15-22. doi: 10.3934/naco.2019002 |
[13] |
Zhuoyi Xu, Yong Xia, Deren Han. On box-constrained total least squares problem. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 439-449. doi: 10.3934/naco.2020043 |
[14] |
Xiao-Wen Chang, David Titley-Peloquin. An improved algorithm for generalized least squares estimation. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 451-461. doi: 10.3934/naco.2020044 |
[15] |
Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial and Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171 |
[16] |
Shun Kodama. A concentration phenomenon of the least energy solution to non-autonomous elliptic problems with a totally degenerate potential. Communications on Pure and Applied Analysis, 2017, 16 (2) : 671-698. doi: 10.3934/cpaa.2017033 |
[17] |
Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 15-34. doi: 10.3934/naco.2011.1.15 |
[18] |
Yanyan Hu, Fubao Xi, Min Zhu. Least squares estimation for distribution-dependent stochastic differential delay equations. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1505-1536. doi: 10.3934/cpaa.2022027 |
[19] |
Gary Lieberman. Oblique derivative problems for elliptic and parabolic equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2409-2444. doi: 10.3934/cpaa.2013.12.2409 |
[20] |
Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems and Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]