April  2009, 5(2): 391-402. doi: 10.3934/jimo.2009.5.391

Censored newsvendor model revisited with unnormalized probabilities

1. 

International Center for Decision and Risk Analysis, School of Management, P.O.Box 830688, SM 30, University of Texas at Dallas, Richardson, TX 75083-0688, United States

2. 

School of Management, P.O.Box 830688, SM 30, University of Texas at Dallas, Richardson, TX 75083-0688, United States

3. 

Center for Intelligent Supply Networks, School of Management, P.O.Box 830688, SM 30, University of Texas at Dallas, Richardson, TX 75083-0688, United States

Received  April 2008 Revised  October 2008 Published  April 2009

This paper revisits the model of the censored newsvendor presented by Ding, Puterman and Bisi [8], We analyze that model in an infinite-horizon context by using the interesting concept of unnormalized probabilities. The unnormalized probabilities considerably simplify the dynamic programming equation and facilitate the proof of the existence of an optimal policy. They can also be used to give a simple, alternative proof to Ding et al.'s claim that the myopic order quantity is always less than or equal to the optimal order quantity. Importantly, the concept of unnormalized probabilities can be used to treat other important operations research problems with partial observations.
Citation: Alain Bensoussan, Metin Çakanyildirim, Suresh P. Sethi. Censored newsvendor model revisited with unnormalized probabilities. Journal of Industrial and Management Optimization, 2009, 5 (2) : 391-402. doi: 10.3934/jimo.2009.5.391
[1]

Reza Lotfi, Gerhard-Wilhelm Weber, S. Mehdi Sajadifar, Nooshin Mardani. Interdependent demand in the two-period newsvendor problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 117-140. doi: 10.3934/jimo.2018143

[2]

Yuwei Shen, Jinxing Xie, Tingting Li. The risk-averse newsvendor game with competition on demand. Journal of Industrial and Management Optimization, 2016, 12 (3) : 931-947. doi: 10.3934/jimo.2016.12.931

[3]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[4]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[5]

Wei Liu, Shiji Song, Ying Qiao, Han Zhao. The loss-averse newsvendor problem with random supply capacity. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1417-1429. doi: 10.3934/jimo.2016080

[6]

Yong Zhang, Huifen Zhong, Yue Liu, Menghu Huang. Online ordering strategy for the discrete newsvendor problem with order value-based free-shipping. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1617-1630. doi: 10.3934/jimo.2018114

[7]

Wei Liu, Shiji Song, Ying Qiao, Han Zhao, Huachang Wang. The loss-averse newsvendor problem with quantity-oriented reference point under CVaR criterion. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2633-2650. doi: 10.3934/jimo.2021085

[8]

Paulina Ávila-Torres, Fernando López-Irarragorri, Rafael Caballero, Yasmín Ríos-Solís. The multimodal and multiperiod urban transportation integrated timetable construction problem with demand uncertainty. Journal of Industrial and Management Optimization, 2018, 14 (2) : 447-472. doi: 10.3934/jimo.2017055

[9]

Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019

[10]

Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial and Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083

[11]

Jia Shu, Zhengyi Li, Weijun Zhong. A market selection and inventory ordering problem under demand uncertainty. Journal of Industrial and Management Optimization, 2011, 7 (2) : 425-434. doi: 10.3934/jimo.2011.7.425

[12]

Drew Fudenberg, David K. Levine. Tail probabilities for triangular arrays. Journal of Dynamics and Games, 2014, 1 (1) : 45-56. doi: 10.3934/jdg.2014.1.45

[13]

Min Zhang, Guowen Xiong, Shanshan Bao, Chao Meng. A time-division distribution strategy for the two-echelon vehicle routing problem with demand blowout. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2847-2872. doi: 10.3934/jimo.2021094

[14]

Adrian Tudorascu. On absolutely continuous curves of probabilities on the line. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5105-5124. doi: 10.3934/dcds.2019207

[15]

Hajnal R. Tóth. Infinite Bernoulli convolutions with different probabilities. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 595-600. doi: 10.3934/dcds.2008.21.595

[16]

Ido Polak, Nicolas Privault. A stochastic newsvendor game with dynamic retail prices. Journal of Industrial and Management Optimization, 2018, 14 (2) : 731-742. doi: 10.3934/jimo.2017072

[17]

Artur O. Lopes, Elismar R. Oliveira. Entropy and variational principles for holonomic probabilities of IFS. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 937-955. doi: 10.3934/dcds.2009.23.937

[18]

Fabio Camilli, Lars Grüne. Characterizing attraction probabilities via the stochastic Zubov equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 457-468. doi: 10.3934/dcdsb.2003.3.457

[19]

Chong Wang, Xu Chen. Fresh produce price-setting newsvendor with bidirectional option contracts. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1979-2000. doi: 10.3934/jimo.2021052

[20]

Leandro Cioletti, Artur O. Lopes. Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6139-6152. doi: 10.3934/dcds.2017264

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (4)

[Back to Top]