July  2009, 5(3): 553-567. doi: 10.3934/jimo.2009.5.553

Feedback limited opportunistic scheduling and admission control for ergodic rate guarantees over Nakagami-$m$ fading channels


School of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea


Department of Mathematical Sciences and Telecommunication Engineering Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea


Network Research Department, Electronics and Telecommunications Research Institute, Daejeon 305-700, South Korea

Received  August 2008 Revised  April 2009 Published  June 2009

In this paper, we consider downlink transmission in a cellular wireless network, where a base station communicates with multiple mobile stations~(MSs) over Nakagami-$m$ fading channels. MSs are classified into two classes, and each class has its own minimum ergodic rate requirement. We propose an opportunistic scheduling and admission control scheme that aims at guaranteeing minimum ergodic rates for all MSs in the network. In order to maintain fairness among MSs in the same class and reduce the feedback load on the uplink of the network, our proposed scheme uses normalized SNR thresholds and exploits multiuser diversity with limited feedback. In our analysis, we give a formula by which we can easily check whether an incoming MS, who requests to join a class in the network, can be accepted or not. For accepted MSs in the network, we obtain the values of thresholds with which all MSs in the network can be guaranteed respective minimum ergodic rate requirements. Through numerical studies and simulations, we confirm the validity of our scheme and analysis, and show the usefulness of our scheme.
Citation: Yoora Kim, Gang Uk Hwang, Hea Sook Park. Feedback limited opportunistic scheduling and admission control for ergodic rate guarantees over Nakagami-$m$ fading channels. Journal of Industrial & Management Optimization, 2009, 5 (3) : 553-567. doi: 10.3934/jimo.2009.5.553

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301


Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1


Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051


Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210


Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313


J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008


Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437


Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329


Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183


A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909


Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399


Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040


John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026


Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.366


  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]