July  2009, 5(3): 553-567. doi: 10.3934/jimo.2009.5.553

Feedback limited opportunistic scheduling and admission control for ergodic rate guarantees over Nakagami-$m$ fading channels

1. 

School of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea

2. 

Department of Mathematical Sciences and Telecommunication Engineering Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea

3. 

Network Research Department, Electronics and Telecommunications Research Institute, Daejeon 305-700, South Korea

Received  August 2008 Revised  April 2009 Published  June 2009

In this paper, we consider downlink transmission in a cellular wireless network, where a base station communicates with multiple mobile stations~(MSs) over Nakagami-$m$ fading channels. MSs are classified into two classes, and each class has its own minimum ergodic rate requirement. We propose an opportunistic scheduling and admission control scheme that aims at guaranteeing minimum ergodic rates for all MSs in the network. In order to maintain fairness among MSs in the same class and reduce the feedback load on the uplink of the network, our proposed scheme uses normalized SNR thresholds and exploits multiuser diversity with limited feedback. In our analysis, we give a formula by which we can easily check whether an incoming MS, who requests to join a class in the network, can be accepted or not. For accepted MSs in the network, we obtain the values of thresholds with which all MSs in the network can be guaranteed respective minimum ergodic rate requirements. Through numerical studies and simulations, we confirm the validity of our scheme and analysis, and show the usefulness of our scheme.
Citation: Yoora Kim, Gang Uk Hwang, Hea Sook Park. Feedback limited opportunistic scheduling and admission control for ergodic rate guarantees over Nakagami-$m$ fading channels. Journal of Industrial & Management Optimization, 2009, 5 (3) : 553-567. doi: 10.3934/jimo.2009.5.553
[1]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[2]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[3]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[4]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[5]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[6]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[7]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[8]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[9]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[10]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[11]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[12]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[13]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[14]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]