October  2009, 5(4): 705-718. doi: 10.3934/jimo.2009.5.705

Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications

1. 

School of Information Science and Engineering, Central South University, Changsha 410083, China, China, China

2. 

Department of Mathematics and Statistics, Curtin University, G.P.O. Box U1987, Perth, WA 6845

3. 

Department of Mathematics and Statistics, Curtin University, Perth 6845, Australia

Received  October 2008 Revised  March 2009 Published  August 2009

In this paper, we consider a class of optimal control problems involving time delayed dynamical systems and subject to continuous state inequality constraints. We show that this type of problem can be approximated by a sequence of time delayed optimal control problems subject to inequality constraints in canonical form and with multiple characteristic time points appearing in the cost and constraint functions. We derive formulae for the gradient of the cost and constraint functions of the approximate problems. On this basis, each approximate problem can be solved using a gradient-based optimization technique. The computational method obtained is then applied to an industrial problem arising in the study of purification process of zinc sulphate electrolyte. The results are highly satisfactory.
Citation: Ling Yun Wang, Wei Hua Gui, Kok Lay Teo, Ryan Loxton, Chun Hua Yang. Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications. Journal of Industrial and Management Optimization, 2009, 5 (4) : 705-718. doi: 10.3934/jimo.2009.5.705
[1]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial and Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[2]

Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1305-1320. doi: 10.3934/jimo.2021021

[3]

Qianqian Wang, Minan Tang, Aimin An, Jiawei Lu, Yingying Zhao. Parameter optimal identification and dynamic behavior analysis of nonlinear model for the solution purification process of zinc hydrometallurgy. Journal of Industrial and Management Optimization, 2022, 18 (1) : 693-712. doi: 10.3934/jimo.2021159

[4]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control and Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[5]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[6]

Ting Kang, Qimin Zhang, Haiyan Wang. Optimal control of an avian influenza model with multiple time delays in state and control variables. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4147-4171. doi: 10.3934/dcdsb.2020278

[7]

Ryan Loxton, Qun Lin, Volker Rehbock, Kok Lay Teo. Control parameterization for optimal control problems with continuous inequality constraints: New convergence results. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 571-599. doi: 10.3934/naco.2012.2.571

[8]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control and Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[9]

Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1845-1865. doi: 10.3934/dcdss.2020109

[10]

Laurenz Göllmann, Helmut Maurer. Theory and applications of optimal control problems with multiple time-delays. Journal of Industrial and Management Optimization, 2014, 10 (2) : 413-441. doi: 10.3934/jimo.2014.10.413

[11]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

[12]

Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1

[13]

Shihe Xu, Fangwei Zhang, Meng Bai. Stability of positive steady-state solutions to a time-delayed system with some applications. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021286

[14]

Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007

[15]

Zhaohua Gong, Chongyang Liu, Yujing Wang. Optimal control of switched systems with multiple time-delays and a cost on changing control. Journal of Industrial and Management Optimization, 2018, 14 (1) : 183-198. doi: 10.3934/jimo.2017042

[16]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control and Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[17]

Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096

[18]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[19]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[20]

Chongyang Liu, Meijia Han. Time-delay optimal control of a fed-batch production involving multiple feeds. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1697-1709. doi: 10.3934/dcdss.2020099

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (181)
  • HTML views (0)
  • Cited by (32)

[Back to Top]