# American Institute of Mathematical Sciences

October  2009, 5(4): 929-950. doi: 10.3934/jimo.2009.5.929

## A network simplex algorithm for solving the minimum distribution cost problem

 1 Department of Industrial and Information Management, National Cheng Kung University, Tainan, 701, Taiwan, Taiwan

Received  October 2008 Revised  July 2009 Published  August 2009

To model the distillation or decomposition of products in some manufacturing processes, a minimum distribution cost problem (MDCP) for a specialized manufacturing network flow model has been investigated. In an MDCP, a specialized node called a D-node is used to model a distillation process that connects with a single incoming arc and several outgoing arcs. The flow entering a D-node has to be distributed according to a pre-specified ratio associated with each of its outgoing arcs. This proportional relationship between arc flows associated with each D-node complicates the problem and makes the MDCP more difficult to solve than a conventional minimum cost network flow problem. A network simplex algorithm for an uncapacitated MDCP has been outlined in the literature. However, its detailed graphical procedures including the operations to obtain an initial basic feasible solution, to calculate or update the dual variables, and to pivot flows have never been reported. In this paper, we resolve these issues and propose a modified network simplex algorithm including detailed graphical operations in each elementary procedure. Our method not only deals with a capacitated MDCP, but also offers more theoretical insights into the mathematical properties of an MDCP.
Citation: I-Lin Wang, Shiou-Jie Lin. A network simplex algorithm for solving the minimum distribution cost problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 929-950. doi: 10.3934/jimo.2009.5.929
 [1] Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251 [2] R.L. Sheu, M.J. Ting, I.L. Wang. Maximum flow problem in the distribution network. Journal of Industrial & Management Optimization, 2006, 2 (3) : 237-254. doi: 10.3934/jimo.2006.2.237 [3] Huai-Che Hong, Bertrand M. T. Lin. A note on network repair crew scheduling and routing for emergency relief distribution problem. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1729-1731. doi: 10.3934/jimo.2018119 [4] Jia Shu, Jie Sun. Designing the distribution network for an integrated supply chain. Journal of Industrial & Management Optimization, 2006, 2 (3) : 339-349. doi: 10.3934/jimo.2006.2.339 [5] Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021, 11 (3) : 643-652. doi: 10.3934/mcrf.2021016 [6] Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 [7] Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial & Management Optimization, 2007, 3 (1) : 71-85. doi: 10.3934/jimo.2007.3.71 [8] Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1371-1384. doi: 10.3934/dcdss.2019094 [9] Yi-Kuei Lin, Cheng-Ta Yeh. Reliability optimization of component assignment problem for a multistate network in terms of minimal cuts. Journal of Industrial & Management Optimization, 2011, 7 (1) : 211-227. doi: 10.3934/jimo.2011.7.211 [10] Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 [11] Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521 [12] Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670 [13] King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021 [14] Qiong Liu, Ahmad Reza Rezaei, Kuan Yew Wong, Mohammad Mahdi Azami. Integrated modeling and optimization of material flow and financial flow of supply chain network considering financial ratios. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 113-132. doi: 10.3934/naco.2019009 [15] Junjie Peng, Ning Chen, Jiayang Dai, Weihua Gui. A goethite process modeling method by Asynchronous Fuzzy Cognitive Network based on an improved constrained chicken swarm optimization algorithm. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1269-1287. doi: 10.3934/jimo.2020021 [16] Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 887-900. doi: 10.3934/dcdss.2019059 [17] Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A flame propagation model on a network with application to a blocking problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 825-843. doi: 10.3934/dcdss.2018051 [18] Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial & Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453 [19] Al-hassem Nayam. Asymptotics of an optimal compliance-network problem. Networks & Heterogeneous Media, 2013, 8 (2) : 573-589. doi: 10.3934/nhm.2013.8.573 [20] Guillaume Cantin, Alexandre Thorel. On a generalized diffusion problem: A complex network approach. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021135

2020 Impact Factor: 1.801