
Previous Article
A recursive topographical differential evolution algorithm for potential energy minimization
 JIMO Home
 This Issue

Next Article
Competitive risk management for online Bahncard problem
A numerical approach to infinitedimensional linear programming in $L_1$ spaces
1.  Department of Mathematical Analysis and Statistical Inference, Institute of Statistical Mathematics, Research Organization of Information and Systems, Tokyo 1068569, Japan 
2.  Department of Mathematics, National Cheng Kung University, Tainan, Taiwan 
3.  Department of Mathematics and Statistics, Curtin University, G.P.O. Box U1987, Perth, WA 6845 
[1] 
Yanqun Liu, MingFang Ding. A ladder method for linear semiinfinite programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 397412. doi: 10.3934/jimo.2014.10.397 
[2] 
Cheng Ma, Xun Li, KaFai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semiinfinite programming problems. Journal of Industrial and Management Optimization, 2012, 8 (3) : 705726. doi: 10.3934/jimo.2012.8.705 
[3] 
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semiinfinite programming. Journal of Industrial and Management Optimization, 2022, 18 (2) : 11331144. doi: 10.3934/jimo.2021012 
[4] 
Zhi Guo Feng, Kok Lay Teo, Volker Rehbock. A smoothing approach for semiinfinite programming with projected Newtontype algorithm. Journal of Industrial and Management Optimization, 2009, 5 (1) : 141151. doi: 10.3934/jimo.2009.5.141 
[5] 
Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. Firstorder optimality conditions for convex semiinfinite minmax programming with noncompact sets. Journal of Industrial and Management Optimization, 2009, 5 (4) : 851866. doi: 10.3934/jimo.2009.5.851 
[6] 
Burcu Özçam, Hao Cheng. A discretization based smoothing method for solving semiinfinite variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 219233. doi: 10.3934/jimo.2005.1.219 
[7] 
Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite/infinitedimensional constraints. Journal of Industrial and Management Optimization, 2014, 10 (2) : 503519. doi: 10.3934/jimo.2014.10.503 
[8] 
Björn Augner, Birgit Jacob. Stability and stabilization of infinitedimensional linear portHamiltonian systems. Evolution Equations and Control Theory, 2014, 3 (2) : 207229. doi: 10.3934/eect.2014.3.207 
[9] 
Radu Ioan Boţ, SorinMihai Grad. On linear vector optimization duality in infinitedimensional spaces. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 407415. doi: 10.3934/naco.2011.1.407 
[10] 
Yaxing Ma, Gengsheng Wang, Huaiqiang Yu. Feedback law to stabilize linear infinitedimensional systems. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022031 
[11] 
Atul Kumar, R. R. Yadav. Analytical approach of onedimensional solute transport through inhomogeneous semiinfinite porous domain for unsteady flow: Dispersion being proportional to square of velocity. Conference Publications, 2013, 2013 (special) : 457466. doi: 10.3934/proc.2013.2013.457 
[12] 
Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semiinfinite regions. Inverse Problems and Imaging, 2008, 2 (3) : 317333. doi: 10.3934/ipi.2008.2.317 
[13] 
Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinitedimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291316. doi: 10.3934/jgm.2017012 
[14] 
Sergey V Lototsky, Henry Schellhorn, Ran Zhao. An infinitedimensional model of liquidity in financial markets. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 117138. doi: 10.3934/puqr.2021006 
[15] 
Jinchuan Zhou, Naihua Xiu, JeinShan Chen. Solution properties and error bounds for semiinfinite complementarity problems. Journal of Industrial and Management Optimization, 2013, 9 (1) : 99115. doi: 10.3934/jimo.2013.9.99 
[16] 
Gang Li, Yinghong Xu, Zhenhua Qin. Optimality conditions for composite DC infinite programming problems. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022064 
[17] 
Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampleddata integral control of multivariable linear infinitedimensional systems with input nonlinearities. Mathematical Control and Related Fields, 2022, 12 (1) : 1747. doi: 10.3934/mcrf.2021001 
[18] 
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete and Continuous Dynamical Systems  B, 2019, 24 (4) : 17431767. doi: 10.3934/dcdsb.2018235 
[19] 
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time. Discrete and Continuous Dynamical Systems  B, 2017, 22 (10) : 38213838. doi: 10.3934/dcdsb.2017192 
[20] 
Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 193206. doi: 10.3934/naco.2012.2.193 
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]