-
Previous Article
Smoothing Newton algorithm based on a regularized one-parametric class of smoothing functions for generalized complementarity problems over symmetric cones
- JIMO Home
- This Issue
-
Next Article
Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems
Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming
1. | Department of Mathematics, Tabriz University Tabriz |
[1] |
Behrouz Kheirfam, Kamal mirnia. Multi-parametric sensitivity analysis in piecewise linear fractional programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 343-351. doi: 10.3934/jimo.2008.4.343 |
[2] |
Rong Hu, Ya-Ping Fang. A parametric simplex algorithm for biobjective piecewise linear programming problems. Journal of Industrial and Management Optimization, 2017, 13 (2) : 573-586. doi: 10.3934/jimo.2016032 |
[3] |
Rui Qian, Rong Hu, Ya-Ping Fang. Local smooth representation of solution sets in parametric linear fractional programming problems. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 45-52. doi: 10.3934/naco.2019004 |
[4] |
Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial and Management Optimization, 2020, 16 (4) : 2029-2044. doi: 10.3934/jimo.2019041 |
[5] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial and Management Optimization, 2022, 18 (1) : 439-456. doi: 10.3934/jimo.2020162 |
[6] |
Charles Fefferman. Interpolation by linear programming I. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477 |
[7] |
Jen-Yen Lin, Hui-Ju Chen, Ruey-Lin Sheu. Augmented Lagrange primal-dual approach for generalized fractional programming problems. Journal of Industrial and Management Optimization, 2013, 9 (4) : 723-741. doi: 10.3934/jimo.2013.9.723 |
[8] |
Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial and Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171 |
[9] |
Shiyun Wang, Yong-Jin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 965-976. doi: 10.3934/jimo.2014.10.965 |
[10] |
Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323 |
[11] |
Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333 |
[12] |
Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193 |
[13] |
Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial and Management Optimization, 2020, 16 (2) : 623-631. doi: 10.3934/jimo.2018170 |
[14] |
Guowei Hua, Shouyang Wang, Chi Kin Chan, S. H. Hou. A fractional programming model for international facility location. Journal of Industrial and Management Optimization, 2009, 5 (3) : 629-649. doi: 10.3934/jimo.2009.5.629 |
[15] |
Ankhbayar Chuluunbaatar, Enkhbat Rentsen. Solving a fractional programming problem in a commercial bank. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021153 |
[16] |
Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397 |
[17] |
Ali Tebbi, Terence Chan, Chi Wan Sung. Linear programming bounds for distributed storage codes. Advances in Mathematics of Communications, 2020, 14 (2) : 333-357. doi: 10.3934/amc.2020024 |
[18] |
Yanqun Liu. Duality in linear programming: From trichotomy to quadrichotomy. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1003-1011. doi: 10.3934/jimo.2011.7.1003 |
[19] |
Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533 |
[20] |
Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial and Management Optimization, 2020, 16 (2) : 965-990. doi: 10.3934/jimo.2018188 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]