\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Robust solutions to Euclidean facility location problems with uncertain data

Abstract Related Papers Cited by
  • We consider uncertainty Euclidean facility location problems. Using the existing robust optimization methodology, we certainly obtain robust optimal solution of the Euclidean facility location problem with unknown-but-bounded uncertainty or with an ellipsoidal uncertainty by solving an SOCP or an SDP. In addition, we show that the robust counterpart of the Euclidean facility location problem with $\cap$-ellipsoidal uncertainty is NP-hard. We give an explicit SDP to approximate the NP-hard problem and estimate the quality of the approximation via the level of conservativeness.
    Mathematics Subject Classification: Primary: 90C08; Secondary: 90C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Alizadeh and D. Goldfarb, Second-order cone programming, Math. Programming, Ser. B, 95 (2003), 3-51.

    [2]

    M. M. Ali and L. Masinga, A nonlinear optimization model for optimal order quantities with stochastic demand rate and price change, J. Ind. Manag. Optim., 3 (2007), 139-154.

    [3]

    K. D. Andersen, E. Christiansen, A. R. Conn and M. L. Overton, An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms, SIAM J. Sci. Comput., 22 (2000), 243-262.doi: 10.1137/S1064827598343954.

    [4]

    A. Ben-Tal, A. Nemirovski and C. Roos, Robust solutions of uncertain quadratic and conic-quadratic problems, SIAM J. Optim., 13 (2002), 535-560.doi: 10.1137/S1052623401392354.

    [5]

    A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math. Oper. Res., 23 (1998), 769-805.doi: 10.1287/moor.23.4.769.

    [6]

    L. El-Ghaoui and H. Lebret, Robust solutions to least-square problems with uncertain data matrices, SIAM J. Matrix Anal. Appl., 18 (1997), 1035-1064.doi: 10.1137/S0895479896298130.

    [7]

    M. L. Overton, A quadratically convergent method for minimizing a sum of Euclidean norms, Math. Programming, 27 (1983), 34-63.doi: 10.1007/BF02591963.

    [8]

    L. Qi and G. Zhou, A smoothing Newton method for minimizing a sum of Euclidean norms, SIAM J. Optim., 11 (2000), 389-410.doi: 10.1137/S105262349834895X.

    [9]

    M. Shunko and S. Gavirneni, Role of Transfer prices in global supply chains with random demands, J. Ind. Manag. Optim., 3 (2007), 99-117.

    [10]

    G. L. Xue and Y. Ye, An efficient algorithm for minimizing a sum of $p$-norms, SIAM J. Optim., 10 (2000), 551-579.doi: 10.1137/S1052623497327088.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return