-
Previous Article
Optimal financing and dividend strategies in a dual model with proportional costs
- JIMO Home
- This Issue
-
Next Article
On information quality ranking and its managerial implications
Robust solutions to Euclidean facility location problems with uncertain data
1. | Department of Mathematical Sciences, Tsinghua University, Beijing 100084 |
2. | Department of Mathematics, National Cheng Kung University, Tainan |
References:
[1] |
F. Alizadeh and D. Goldfarb, Second-order cone programming,, Math. Programming, 95 (2003), 3.
|
[2] |
M. M. Ali and L. Masinga, A nonlinear optimization model for optimal order quantities with stochastic demand rate and price change,, J. Ind. Manag. Optim., 3 (2007), 139.
|
[3] |
K. D. Andersen, E. Christiansen, A. R. Conn and M. L. Overton, An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms,, SIAM J. Sci. Comput., 22 (2000), 243.
doi: 10.1137/S1064827598343954. |
[4] |
A. Ben-Tal, A. Nemirovski and C. Roos, Robust solutions of uncertain quadratic and conic-quadratic problems,, SIAM J. Optim., 13 (2002), 535.
doi: 10.1137/S1052623401392354. |
[5] |
A. Ben-Tal and A. Nemirovski, Robust convex optimization,, Math. Oper. Res., 23 (1998), 769.
doi: 10.1287/moor.23.4.769. |
[6] |
L. El-Ghaoui and H. Lebret, Robust solutions to least-square problems with uncertain data matrices,, SIAM J. Matrix Anal. Appl., 18 (1997), 1035.
doi: 10.1137/S0895479896298130. |
[7] |
M. L. Overton, A quadratically convergent method for minimizing a sum of Euclidean norms,, Math. Programming, 27 (1983), 34.
doi: 10.1007/BF02591963. |
[8] |
L. Qi and G. Zhou, A smoothing Newton method for minimizing a sum of Euclidean norms,, SIAM J. Optim., 11 (2000), 389.
doi: 10.1137/S105262349834895X. |
[9] |
M. Shunko and S. Gavirneni, Role of Transfer prices in global supply chains with random demands,, J. Ind. Manag. Optim., 3 (2007), 99.
|
[10] |
G. L. Xue and Y. Ye, An efficient algorithm for minimizing a sum of $p$-norms,, SIAM J. Optim., 10 (2000), 551.
doi: 10.1137/S1052623497327088. |
show all references
References:
[1] |
F. Alizadeh and D. Goldfarb, Second-order cone programming,, Math. Programming, 95 (2003), 3.
|
[2] |
M. M. Ali and L. Masinga, A nonlinear optimization model for optimal order quantities with stochastic demand rate and price change,, J. Ind. Manag. Optim., 3 (2007), 139.
|
[3] |
K. D. Andersen, E. Christiansen, A. R. Conn and M. L. Overton, An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms,, SIAM J. Sci. Comput., 22 (2000), 243.
doi: 10.1137/S1064827598343954. |
[4] |
A. Ben-Tal, A. Nemirovski and C. Roos, Robust solutions of uncertain quadratic and conic-quadratic problems,, SIAM J. Optim., 13 (2002), 535.
doi: 10.1137/S1052623401392354. |
[5] |
A. Ben-Tal and A. Nemirovski, Robust convex optimization,, Math. Oper. Res., 23 (1998), 769.
doi: 10.1287/moor.23.4.769. |
[6] |
L. El-Ghaoui and H. Lebret, Robust solutions to least-square problems with uncertain data matrices,, SIAM J. Matrix Anal. Appl., 18 (1997), 1035.
doi: 10.1137/S0895479896298130. |
[7] |
M. L. Overton, A quadratically convergent method for minimizing a sum of Euclidean norms,, Math. Programming, 27 (1983), 34.
doi: 10.1007/BF02591963. |
[8] |
L. Qi and G. Zhou, A smoothing Newton method for minimizing a sum of Euclidean norms,, SIAM J. Optim., 11 (2000), 389.
doi: 10.1137/S105262349834895X. |
[9] |
M. Shunko and S. Gavirneni, Role of Transfer prices in global supply chains with random demands,, J. Ind. Manag. Optim., 3 (2007), 99.
|
[10] |
G. L. Xue and Y. Ye, An efficient algorithm for minimizing a sum of $p$-norms,, SIAM J. Optim., 10 (2000), 551.
doi: 10.1137/S1052623497327088. |
[1] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[2] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[3] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[4] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[5] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[6] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[7] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[8] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[9] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[10] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[11] |
Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[12] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[13] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[14] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[15] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[16] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[17] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[18] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[19] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[20] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]