October  2010, 6(4): 761-777. doi: 10.3934/jimo.2010.6.761

Optimal financing and dividend strategies in a dual model with proportional costs

1. 

School of Finance, Nanjing University of Finance and Economics, Nanjing, 210046, China

2. 

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong

3. 

School of Finance and Statistics, East China Normal University, Shanghai, 200241

Received  August 2009 Revised  April 2010 Published  September 2010

We consider the optimal control problem with dividend payments and issuance of equity in a dual risk model. Such a model might be appropriate for a company that specializes in inventions and discoveries, which pays costs continuously and has occasional profits. Assuming proportional transaction costs, we aim at finding optimal strategy which maximizes the expected present value of the dividends payout minus the discounted costs of issuing new equity before bankruptcy. By adopting some of the techniques and methodologies in L$\phi$kka and Zervos (2008), we construct two categories of suboptimal models, one is the ordinary dual model without issuance of equity, the other one assumes that, by issuing new equity, the company never goes bankrupt. We identify the value functions and the optimal strategies corresponding to the suboptimal models in two different cases. For exponentially distributed jump sizes, closed-form solutions are obtained.
Citation: Dingjun Yao, Hailiang Yang, Rongming Wang. Optimal financing and dividend strategies in a dual model with proportional costs. Journal of Industrial & Management Optimization, 2010, 6 (4) : 761-777. doi: 10.3934/jimo.2010.6.761
References:
[1]

S. Asmussen, B. Høgaard and M. Taksar, Optimal risk control and dividend distribution policies: Example of excess-of-loss reinsurance for an insurance corporation,, Finance and Stochastics, 4 (2000), 299.  doi: 10.1007/s007800050075.  Google Scholar

[2]

B. Avanzi, H. U. Gerber and E. S. W. Shiu, Optimal dividends in the dual model,, Insurance: Mathematics and Economics, 41 (2007), 111.  doi: 10.1016/j.insmatheco.2006.10.002.  Google Scholar

[3]

A. Cadenillas, T. Choulli, M. Taksar and L. Zhang, Classical and impulse Stochastic control for the optimization of the dividend and risk policies of an insurance firm,, Mathematical Finance, 16 (2006), 181.  doi: 10.1111/j.1467-9965.2006.00267.x.  Google Scholar

[4]

B. De Finetti, Su un'impostazione alternativa dell teoria colletiva del rischio,, Transactions of the XV International Congress of Actuaries, 2 (1957), 433.   Google Scholar

[5]

Y. H. Dong and G. J. Wang, Ruin probability for renewal risk model with negative risk sums,, Journal of Industrial and Management Optimization, 2 (2006), 229.   Google Scholar

[6]

W. H. Flemming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,", Springer-Verlag, (1993).   Google Scholar

[7]

H. U. Gerber, Games of economic survival with discrete- and continuous-income processes,, Operations Research, 20 (1972), 37.  doi: 10.1287/opre.20.1.37.  Google Scholar

[8]

H. U. Gerber and E. S. W. Shiu, Optimal dividends: Analysis with Brownian motion,, North American Actuarial Journal, 8 (2004), 1.   Google Scholar

[9]

J. Grandell, "Aspects of Risk Theory,", New York, (1991).   Google Scholar

[10]

L. He and Z. X. Liang, Optimal financing and dividend control of the insurance company with proportional reinsurance strategy,, Insurance: Mathematics and Economics, 42 (2008), 976.  doi: 10.1016/j.insmatheco.2007.11.003.  Google Scholar

[11]

B. Høgaard and M. Taksar, Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution strategy,, Quantitative Finance, 4 (2004), 315.  doi: 10.1088/1469-7688/4/3/007.  Google Scholar

[12]

M. Jeanblanc and A. N. Shiryaev, Optimization of the flow of dividends,, Russian Mathematical Surveys, 50 (1995), 257.  doi: 10.1070/RM1995v050n02ABEH002054.  Google Scholar

[13]

N. Kulenko and H. Schimidli, Optimal dividend strategy in a Cramér-Lundberg model with capital injections,, Insurance: Mathmatics and Economics, 43 (2008), 270.  doi: 10.1016/j.insmatheco.2008.05.013.  Google Scholar

[14]

G. Lu, Q. Hu, Y. Zhou and W. Yue, Optimal execution strategy with an endogenously determined sales period,, Journal of Industrial and Management Optimization, 1 (2005), 280.   Google Scholar

[15]

A. Løkka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs,, Insurance: Mathematics and Economics, 42 (2008), 954.  doi: 10.1016/j.insmatheco.2007.10.013.  Google Scholar

[16]

A. C. Y. Ng, On a dual model with a dividend threshold,, Insurance: Mathematics and Economics, 44 (2009), 315.  doi: 10.1016/j.insmatheco.2008.11.011.  Google Scholar

[17]

H. L. Seal, "Stochastic Theory of a Risk Business,", Wiley, (1969).   Google Scholar

[18]

S. P. Sethi and M. Taksar, Optimal financing of a corporation subject to random returns,, Mathematical Finance, 12 (2002), 155.  doi: 10.1111/1467-9965.t01-2-02002.  Google Scholar

[19]

L. Xu, R. M. Wang and D. J. Yao, On maximizing the expected terminal utility by investment and reinsurance,, Journal of Industrial and Management Optimization, 4 (2008), 801.   Google Scholar

[20]

K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolio under a value-at-risk constraint with applications to inventory control in supply chains,, Journal of Industrial and Management Optimization, 4 (2008), 81.  doi: 10.3934/jimo.2009.5.81.  Google Scholar

[21]

J. X. Zhu and H. L. Yang, Ruin probabilities of a dual Markov-modulated risk model,, Communications in Statistics-Theory and Methods, 37 (2008), 3298.  doi: 10.1080/03610920802117080.  Google Scholar

show all references

References:
[1]

S. Asmussen, B. Høgaard and M. Taksar, Optimal risk control and dividend distribution policies: Example of excess-of-loss reinsurance for an insurance corporation,, Finance and Stochastics, 4 (2000), 299.  doi: 10.1007/s007800050075.  Google Scholar

[2]

B. Avanzi, H. U. Gerber and E. S. W. Shiu, Optimal dividends in the dual model,, Insurance: Mathematics and Economics, 41 (2007), 111.  doi: 10.1016/j.insmatheco.2006.10.002.  Google Scholar

[3]

A. Cadenillas, T. Choulli, M. Taksar and L. Zhang, Classical and impulse Stochastic control for the optimization of the dividend and risk policies of an insurance firm,, Mathematical Finance, 16 (2006), 181.  doi: 10.1111/j.1467-9965.2006.00267.x.  Google Scholar

[4]

B. De Finetti, Su un'impostazione alternativa dell teoria colletiva del rischio,, Transactions of the XV International Congress of Actuaries, 2 (1957), 433.   Google Scholar

[5]

Y. H. Dong and G. J. Wang, Ruin probability for renewal risk model with negative risk sums,, Journal of Industrial and Management Optimization, 2 (2006), 229.   Google Scholar

[6]

W. H. Flemming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,", Springer-Verlag, (1993).   Google Scholar

[7]

H. U. Gerber, Games of economic survival with discrete- and continuous-income processes,, Operations Research, 20 (1972), 37.  doi: 10.1287/opre.20.1.37.  Google Scholar

[8]

H. U. Gerber and E. S. W. Shiu, Optimal dividends: Analysis with Brownian motion,, North American Actuarial Journal, 8 (2004), 1.   Google Scholar

[9]

J. Grandell, "Aspects of Risk Theory,", New York, (1991).   Google Scholar

[10]

L. He and Z. X. Liang, Optimal financing and dividend control of the insurance company with proportional reinsurance strategy,, Insurance: Mathematics and Economics, 42 (2008), 976.  doi: 10.1016/j.insmatheco.2007.11.003.  Google Scholar

[11]

B. Høgaard and M. Taksar, Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution strategy,, Quantitative Finance, 4 (2004), 315.  doi: 10.1088/1469-7688/4/3/007.  Google Scholar

[12]

M. Jeanblanc and A. N. Shiryaev, Optimization of the flow of dividends,, Russian Mathematical Surveys, 50 (1995), 257.  doi: 10.1070/RM1995v050n02ABEH002054.  Google Scholar

[13]

N. Kulenko and H. Schimidli, Optimal dividend strategy in a Cramér-Lundberg model with capital injections,, Insurance: Mathmatics and Economics, 43 (2008), 270.  doi: 10.1016/j.insmatheco.2008.05.013.  Google Scholar

[14]

G. Lu, Q. Hu, Y. Zhou and W. Yue, Optimal execution strategy with an endogenously determined sales period,, Journal of Industrial and Management Optimization, 1 (2005), 280.   Google Scholar

[15]

A. Løkka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs,, Insurance: Mathematics and Economics, 42 (2008), 954.  doi: 10.1016/j.insmatheco.2007.10.013.  Google Scholar

[16]

A. C. Y. Ng, On a dual model with a dividend threshold,, Insurance: Mathematics and Economics, 44 (2009), 315.  doi: 10.1016/j.insmatheco.2008.11.011.  Google Scholar

[17]

H. L. Seal, "Stochastic Theory of a Risk Business,", Wiley, (1969).   Google Scholar

[18]

S. P. Sethi and M. Taksar, Optimal financing of a corporation subject to random returns,, Mathematical Finance, 12 (2002), 155.  doi: 10.1111/1467-9965.t01-2-02002.  Google Scholar

[19]

L. Xu, R. M. Wang and D. J. Yao, On maximizing the expected terminal utility by investment and reinsurance,, Journal of Industrial and Management Optimization, 4 (2008), 801.   Google Scholar

[20]

K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolio under a value-at-risk constraint with applications to inventory control in supply chains,, Journal of Industrial and Management Optimization, 4 (2008), 81.  doi: 10.3934/jimo.2009.5.81.  Google Scholar

[21]

J. X. Zhu and H. L. Yang, Ruin probabilities of a dual Markov-modulated risk model,, Communications in Statistics-Theory and Methods, 37 (2008), 3298.  doi: 10.1080/03610920802117080.  Google Scholar

[1]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[4]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[5]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[6]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[7]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[8]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[9]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[10]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[11]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[12]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[13]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[14]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[15]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[16]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[17]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[18]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[19]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[20]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]