-
Previous Article
Extended canonical duality and conic programming for solving 0-1 quadratic programming problems
- JIMO Home
- This Issue
-
Next Article
Robust solutions to Euclidean facility location problems with uncertain data
Optimal financing and dividend strategies in a dual model with proportional costs
1. | School of Finance, Nanjing University of Finance and Economics, Nanjing, 210046, China |
2. | Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong |
3. | School of Finance and Statistics, East China Normal University, Shanghai, 200241 |
References:
[1] |
S. Asmussen, B. Høgaard and M. Taksar, Optimal risk control and dividend distribution policies: Example of excess-of-loss reinsurance for an insurance corporation, Finance and Stochastics, 4 (2000), 299-324.
doi: 10.1007/s007800050075. |
[2] |
B. Avanzi, H. U. Gerber and E. S. W. Shiu, Optimal dividends in the dual model, Insurance: Mathematics and Economics, 41 (2007), 111-123.
doi: 10.1016/j.insmatheco.2006.10.002. |
[3] |
A. Cadenillas, T. Choulli, M. Taksar and L. Zhang, Classical and impulse Stochastic control for the optimization of the dividend and risk policies of an insurance firm, Mathematical Finance, 16 (2006), 181-202.
doi: 10.1111/j.1467-9965.2006.00267.x. |
[4] |
B. De Finetti, Su un'impostazione alternativa dell teoria colletiva del rischio, Transactions of the XV International Congress of Actuaries, 2 (1957), 433-443. |
[5] |
Y. H. Dong and G. J. Wang, Ruin probability for renewal risk model with negative risk sums, Journal of Industrial and Management Optimization, 2 (2006), 229-236. |
[6] |
W. H. Flemming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions," Springer-Verlag, NewYork, 1993. |
[7] |
H. U. Gerber, Games of economic survival with discrete- and continuous-income processes, Operations Research, 20 (1972), 37-45.
doi: 10.1287/opre.20.1.37. |
[8] |
H. U. Gerber and E. S. W. Shiu, Optimal dividends: Analysis with Brownian motion, North American Actuarial Journal, 8 (2004), 1-20. |
[9] |
J. Grandell, "Aspects of Risk Theory," New York, Springer-Verlag, 1991. |
[10] |
L. He and Z. X. Liang, Optimal financing and dividend control of the insurance company with proportional reinsurance strategy, Insurance: Mathematics and Economics, 42 (2008), 976-983.
doi: 10.1016/j.insmatheco.2007.11.003. |
[11] |
B. Høgaard and M. Taksar, Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution strategy, Quantitative Finance, 4 (2004), 315-327.
doi: 10.1088/1469-7688/4/3/007. |
[12] |
M. Jeanblanc and A. N. Shiryaev, Optimization of the flow of dividends, Russian Mathematical Surveys, 50 (1995), 257-277.
doi: 10.1070/RM1995v050n02ABEH002054. |
[13] |
N. Kulenko and H. Schimidli, Optimal dividend strategy in a Cramér-Lundberg model with capital injections, Insurance: Mathmatics and Economics, 43 (2008), 270-278.
doi: 10.1016/j.insmatheco.2008.05.013. |
[14] |
G. Lu, Q. Hu, Y. Zhou and W. Yue, Optimal execution strategy with an endogenously determined sales period, Journal of Industrial and Management Optimization, 1 (2005), 280-304. |
[15] |
A. Løkka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs, Insurance: Mathematics and Economics, 42 (2008), 954-961.
doi: 10.1016/j.insmatheco.2007.10.013. |
[16] |
A. C. Y. Ng, On a dual model with a dividend threshold, Insurance: Mathematics and Economics, 44 (2009), 315-324.
doi: 10.1016/j.insmatheco.2008.11.011. |
[17] |
H. L. Seal, "Stochastic Theory of a Risk Business," Wiley, New York, 1969. |
[18] |
S. P. Sethi and M. Taksar, Optimal financing of a corporation subject to random returns, Mathematical Finance, 12 (2002), 155-172.
doi: 10.1111/1467-9965.t01-2-02002. |
[19] |
L. Xu, R. M. Wang and D. J. Yao, On maximizing the expected terminal utility by investment and reinsurance, Journal of Industrial and Management Optimization, 4 (2008), 801-815. |
[20] |
K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolio under a value-at-risk constraint with applications to inventory control in supply chains, Journal of Industrial and Management Optimization, 4 (2008), 81-94.
doi: 10.3934/jimo.2009.5.81. |
[21] |
J. X. Zhu and H. L. Yang, Ruin probabilities of a dual Markov-modulated risk model, Communications in Statistics-Theory and Methods, 37 (2008), 3298-3307.
doi: 10.1080/03610920802117080. |
show all references
References:
[1] |
S. Asmussen, B. Høgaard and M. Taksar, Optimal risk control and dividend distribution policies: Example of excess-of-loss reinsurance for an insurance corporation, Finance and Stochastics, 4 (2000), 299-324.
doi: 10.1007/s007800050075. |
[2] |
B. Avanzi, H. U. Gerber and E. S. W. Shiu, Optimal dividends in the dual model, Insurance: Mathematics and Economics, 41 (2007), 111-123.
doi: 10.1016/j.insmatheco.2006.10.002. |
[3] |
A. Cadenillas, T. Choulli, M. Taksar and L. Zhang, Classical and impulse Stochastic control for the optimization of the dividend and risk policies of an insurance firm, Mathematical Finance, 16 (2006), 181-202.
doi: 10.1111/j.1467-9965.2006.00267.x. |
[4] |
B. De Finetti, Su un'impostazione alternativa dell teoria colletiva del rischio, Transactions of the XV International Congress of Actuaries, 2 (1957), 433-443. |
[5] |
Y. H. Dong and G. J. Wang, Ruin probability for renewal risk model with negative risk sums, Journal of Industrial and Management Optimization, 2 (2006), 229-236. |
[6] |
W. H. Flemming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions," Springer-Verlag, NewYork, 1993. |
[7] |
H. U. Gerber, Games of economic survival with discrete- and continuous-income processes, Operations Research, 20 (1972), 37-45.
doi: 10.1287/opre.20.1.37. |
[8] |
H. U. Gerber and E. S. W. Shiu, Optimal dividends: Analysis with Brownian motion, North American Actuarial Journal, 8 (2004), 1-20. |
[9] |
J. Grandell, "Aspects of Risk Theory," New York, Springer-Verlag, 1991. |
[10] |
L. He and Z. X. Liang, Optimal financing and dividend control of the insurance company with proportional reinsurance strategy, Insurance: Mathematics and Economics, 42 (2008), 976-983.
doi: 10.1016/j.insmatheco.2007.11.003. |
[11] |
B. Høgaard and M. Taksar, Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution strategy, Quantitative Finance, 4 (2004), 315-327.
doi: 10.1088/1469-7688/4/3/007. |
[12] |
M. Jeanblanc and A. N. Shiryaev, Optimization of the flow of dividends, Russian Mathematical Surveys, 50 (1995), 257-277.
doi: 10.1070/RM1995v050n02ABEH002054. |
[13] |
N. Kulenko and H. Schimidli, Optimal dividend strategy in a Cramér-Lundberg model with capital injections, Insurance: Mathmatics and Economics, 43 (2008), 270-278.
doi: 10.1016/j.insmatheco.2008.05.013. |
[14] |
G. Lu, Q. Hu, Y. Zhou and W. Yue, Optimal execution strategy with an endogenously determined sales period, Journal of Industrial and Management Optimization, 1 (2005), 280-304. |
[15] |
A. Løkka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs, Insurance: Mathematics and Economics, 42 (2008), 954-961.
doi: 10.1016/j.insmatheco.2007.10.013. |
[16] |
A. C. Y. Ng, On a dual model with a dividend threshold, Insurance: Mathematics and Economics, 44 (2009), 315-324.
doi: 10.1016/j.insmatheco.2008.11.011. |
[17] |
H. L. Seal, "Stochastic Theory of a Risk Business," Wiley, New York, 1969. |
[18] |
S. P. Sethi and M. Taksar, Optimal financing of a corporation subject to random returns, Mathematical Finance, 12 (2002), 155-172.
doi: 10.1111/1467-9965.t01-2-02002. |
[19] |
L. Xu, R. M. Wang and D. J. Yao, On maximizing the expected terminal utility by investment and reinsurance, Journal of Industrial and Management Optimization, 4 (2008), 801-815. |
[20] |
K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolio under a value-at-risk constraint with applications to inventory control in supply chains, Journal of Industrial and Management Optimization, 4 (2008), 81-94.
doi: 10.3934/jimo.2009.5.81. |
[21] |
J. X. Zhu and H. L. Yang, Ruin probabilities of a dual Markov-modulated risk model, Communications in Statistics-Theory and Methods, 37 (2008), 3298-3307.
doi: 10.1080/03610920802117080. |
[1] |
Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369 |
[2] |
Bian-Xia Yang, Shanshan Gu, Guowei Dai. Existence and multiplicity for Hamilton-Jacobi-Bellman equation. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3767-3793. doi: 10.3934/cpaa.2021130 |
[3] |
Chuancun Yin, Kam Chuen Yuen. Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1247-1262. doi: 10.3934/jimo.2015.11.1247 |
[4] |
Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial and Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161 |
[5] |
Zhen-Zhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, 2021, 29 (5) : 3429-3447. doi: 10.3934/era.2021046 |
[6] |
Xuhui Wang, Lei Hu. A new method to solve the Hamilton-Jacobi-Bellman equation for a stochastic portfolio optimization model with boundary memory. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021137 |
[7] |
Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251 |
[8] |
Dingjun Yao, Rongming Wang, Lin Xu. Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1235-1259. doi: 10.3934/jimo.2014.10.1235 |
[9] |
Gongpin Cheng, Rongming Wang, Dingjun Yao. Optimal dividend and capital injection strategy with excess-of-loss reinsurance and transaction costs. Journal of Industrial and Management Optimization, 2018, 14 (1) : 371-395. doi: 10.3934/jimo.2017051 |
[10] |
Linyi Qian, Lyu Chen, Zhuo Jin, Rongming Wang. Optimal liability ratio and dividend payment strategies under catastrophic risk. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1443-1461. doi: 10.3934/jimo.2018015 |
[11] |
Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933 |
[12] |
Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial and Management Optimization, 2022, 18 (2) : 795-823. doi: 10.3934/jimo.2020179 |
[13] |
Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223 |
[14] |
Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159 |
[15] |
Gongpin Cheng, Lin Xu. Optimal size of business and dividend strategy in a nonlinear model with refinancing and liquidation value. Mathematical Control and Related Fields, 2017, 7 (1) : 1-19. doi: 10.3934/mcrf.2017001 |
[16] |
Xuanhua Peng, Wen Su, Zhimin Zhang. On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1967-1986. doi: 10.3934/jimo.2019038 |
[17] |
Federica Masiero. Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and superquadratic Hamiltonian. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 223-263. doi: 10.3934/dcds.2012.32.223 |
[18] |
Alexander Melnikov, Hongxi Wan. CVaR-hedging and its applications to equity-linked life insurance contracts with transaction costs. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 343-368. doi: 10.3934/puqr.2021017 |
[19] |
Qian Zhao, Zhuo Jin, Jiaqin Wei. Optimal investment and dividend payment strategies with debt management and reinsurance. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1323-1348. doi: 10.3934/jimo.2018009 |
[20] |
Zhen Wang, Sanyang Liu. Multi-period mean-variance portfolio selection with fixed and proportional transaction costs. Journal of Industrial and Management Optimization, 2013, 9 (3) : 643-657. doi: 10.3934/jimo.2013.9.643 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]