-
Previous Article
Externality of contracts on supply chains with two suppliers and a common retailer
- JIMO Home
- This Issue
-
Next Article
Optimal financing and dividend strategies in a dual model with proportional costs
Extended canonical duality and conic programming for solving 0-1 quadratic programming problems
1. | Department of Mathematical Sciences, Tsinghua University, Beijing, China |
2. | Department of Industrial and System Engineering, North Carolina State University, Raleigh, NC 27695, United States |
References:
[1] |
K. Allemand, K. Fukuda, T. M. Liebling and E. Steiner, A polynomial case of unconstrained zero-one quadratic optimization,, Mathematical Programming, 91 (2001), 49.
|
[2] |
S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs,, Mathematical Programming, 120 (2009), 479.
doi: 10.1007/s10107-008-0223-z. |
[3] |
S.-C. Fang, D. Y. Gao, R.-L. Sheu and S.-Y. Wu, Canonical dual approach to solving 0-1 quadratic programming problem,, J. Industrial and Management Optimization, 3 (2007), 125.
|
[4] |
S.-C. Fang, D. Y. Gao, R.-L. Sheu and W. Xing, Global optimization for a class of fractional programming problems,, J. Global Optimization, 45 (2009), 337.
doi: 10.1007/s10898-008-9378-7. |
[5] |
D. Y. Gao, Canonical dual transformation method and generalized triality theory in nonsmooth global optimization,, J. Global Optimization, 17 (2000), 127.
doi: 10.1023/A:1026537630859. |
[6] |
D. Y. Gao, Advances in canonical duality theory with applications to global optimization,, available at: , (). Google Scholar |
[7] |
M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness,", W. H. Freeman, (1979).
|
[8] |
M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,, J. ACM, 42 (1995), 1115.
doi: 10.1145/227683.227684. |
[9] |
V. Jeyakumar, A. M. Rubinov and Z. Y. Wu, Non-convex quadratic minimization problems with quadratic constraints: Global optimality conditions,, Mathematical Programming, 110 (2007), 521.
doi: 10.1007/s10107-006-0012-5. |
[10] |
Q. Jin, S.-C. Fang and W. Xing, On the global optimality of generalized trust region subproblems,, Optimization., ().
doi: DOI:10.1080/02331930902995236. |
[11] |
E. Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming,, SIAM J. Optimization, 12 (2002), 875.
doi: 10.1137/S1052623401383248. |
[12] |
C. Lu, Z. Wang and W. Xing, An improved lower bound and approximation algorithm for binary constrained quadratic programming problem,, J. Global Optimization., ().
doi: DOI: 10.1007/s10898-009-9504-1. |
[13] |
A. Ben-Israel and T. N. E. Greville, "Generalized Inverses,", Springer-Verlag, (2003).
|
[14] |
P. M. Pardalos and G. P. Rodgers, Computational aspects of a branch and bound algorithm for quadratic zero-one programming,, Computing, 45 (1990), 131.
doi: 10.1007/BF02247879. |
[15] |
J. F. Sturm and S. Z. Zhang, On cones of nonnegative quadratic functions,, Mathematics of Operations Research, 28 (2003), 246.
doi: 10.1287/moor.28.2.246.14485. |
[16] |
X. Sun, C. Liu, D. Li and J. Gao, On duality gap in binary quadratic programming,, aviable at: , (). Google Scholar |
[17] |
Z. Wang, S.-C. Fang, D. Y. Gao and W. Xing, Global extremal conditions for multi-integer quadratic programming,, J. Industrial and Management Optimization, 4 (2008), 213.
|
[18] |
Z. Wang, S.-C. Fang, D. Y. Gao and W. Xing, Canonical dual approach to solving the maximum cut problem,, Working Paper, (). Google Scholar |
[19] |
L. A. Wolsey, "Integer Programming,", Wiley-Interscience, (1998).
|
[20] |
W. Xing, S.-C. Fang, D. Y. Gao and L. Zhang, Canonical duality solutions to quadratic programming over a quadratic constraint,, Proceedings of ICOTA7, (2007), 35. Google Scholar |
show all references
References:
[1] |
K. Allemand, K. Fukuda, T. M. Liebling and E. Steiner, A polynomial case of unconstrained zero-one quadratic optimization,, Mathematical Programming, 91 (2001), 49.
|
[2] |
S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs,, Mathematical Programming, 120 (2009), 479.
doi: 10.1007/s10107-008-0223-z. |
[3] |
S.-C. Fang, D. Y. Gao, R.-L. Sheu and S.-Y. Wu, Canonical dual approach to solving 0-1 quadratic programming problem,, J. Industrial and Management Optimization, 3 (2007), 125.
|
[4] |
S.-C. Fang, D. Y. Gao, R.-L. Sheu and W. Xing, Global optimization for a class of fractional programming problems,, J. Global Optimization, 45 (2009), 337.
doi: 10.1007/s10898-008-9378-7. |
[5] |
D. Y. Gao, Canonical dual transformation method and generalized triality theory in nonsmooth global optimization,, J. Global Optimization, 17 (2000), 127.
doi: 10.1023/A:1026537630859. |
[6] |
D. Y. Gao, Advances in canonical duality theory with applications to global optimization,, available at: , (). Google Scholar |
[7] |
M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness,", W. H. Freeman, (1979).
|
[8] |
M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,, J. ACM, 42 (1995), 1115.
doi: 10.1145/227683.227684. |
[9] |
V. Jeyakumar, A. M. Rubinov and Z. Y. Wu, Non-convex quadratic minimization problems with quadratic constraints: Global optimality conditions,, Mathematical Programming, 110 (2007), 521.
doi: 10.1007/s10107-006-0012-5. |
[10] |
Q. Jin, S.-C. Fang and W. Xing, On the global optimality of generalized trust region subproblems,, Optimization., ().
doi: DOI:10.1080/02331930902995236. |
[11] |
E. Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming,, SIAM J. Optimization, 12 (2002), 875.
doi: 10.1137/S1052623401383248. |
[12] |
C. Lu, Z. Wang and W. Xing, An improved lower bound and approximation algorithm for binary constrained quadratic programming problem,, J. Global Optimization., ().
doi: DOI: 10.1007/s10898-009-9504-1. |
[13] |
A. Ben-Israel and T. N. E. Greville, "Generalized Inverses,", Springer-Verlag, (2003).
|
[14] |
P. M. Pardalos and G. P. Rodgers, Computational aspects of a branch and bound algorithm for quadratic zero-one programming,, Computing, 45 (1990), 131.
doi: 10.1007/BF02247879. |
[15] |
J. F. Sturm and S. Z. Zhang, On cones of nonnegative quadratic functions,, Mathematics of Operations Research, 28 (2003), 246.
doi: 10.1287/moor.28.2.246.14485. |
[16] |
X. Sun, C. Liu, D. Li and J. Gao, On duality gap in binary quadratic programming,, aviable at: , (). Google Scholar |
[17] |
Z. Wang, S.-C. Fang, D. Y. Gao and W. Xing, Global extremal conditions for multi-integer quadratic programming,, J. Industrial and Management Optimization, 4 (2008), 213.
|
[18] |
Z. Wang, S.-C. Fang, D. Y. Gao and W. Xing, Canonical dual approach to solving the maximum cut problem,, Working Paper, (). Google Scholar |
[19] |
L. A. Wolsey, "Integer Programming,", Wiley-Interscience, (1998).
|
[20] |
W. Xing, S.-C. Fang, D. Y. Gao and L. Zhang, Canonical duality solutions to quadratic programming over a quadratic constraint,, Proceedings of ICOTA7, (2007), 35. Google Scholar |
[1] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[2] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[3] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[6] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[7] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[8] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[9] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[10] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[11] |
Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020128 |
[12] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[13] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]