Citation: |
[1] |
R. E. Bellman, "Dynamic Programming," Princeton University Press, 1957. |
[2] |
J. R. Correa, A. S. Schulz and N. E. Stier-Moses, Selfish routing in capacitated networks, Math. Oper. Res., 29 (2004), 961-976.doi: 10.1287/moor.1040.0098. |
[3] |
A. Czumaj and B. Vöcking, Tight bounds for worst-case equilibria, in "Proc. 13th ACM-SIAM Symp. on Discrete Algorithms," (2002), 413-420. |
[4] |
M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness," WH Freeman, 1979. |
[5] |
E. Horowitz and S. Sahni, Computing partitions with applications to the knapsack problem, J. ACM, 21 (1974), 277-292.doi: 10.1145/321812.321823. |
[6] |
H. Kellerer, U. Pferschy and D. Pisinger, "Knapsack Problems," Springer, 2004. |
[7] |
E. Koutsoupias and C. H. Papadimitriou, Worst-case equilibria, in "Proc. 16th Symp. on Theoretical Aspects of Computer Science," (1999), 404-413. |
[8] |
S. Martello and P. Toth, A mixture of dynamic programming and branch-and-bound for the subset-sum problem, Manage. Sci., 30 (1984), 765-771.doi: 10.1287/mnsc.30.6.765. |
[9] |
S. Martello and P. Toth, Dynamic programming and strong bounds for the 0-1 knapsack problem, Manage. Sci., 45 (1999), 275-288.doi: 10.1287/mnsc.45.3.414. |
[10] |
I. Milchtaich, Congestion games with player-specific payoff functions, Games and Economic Behavior, 13 (1996), 111-124.doi: 10.1006/game.1996.0027. |
[11] |
D. Monderer and L. Shapley, Potential games, Games and Economic Behavior, 14 (1996), 124-143.doi: 10.1006/game.1996.0044. |
[12] |
J. F. Nash, Equilibrium points in $n$-Person games, P. Nalt. Acad Sci., 36 (1950), 48-49.doi: 10.1073/pnas.36.1.48. |
[13] |
R. M. Nauss, An efficient algorithm for the 0-1 knapsack problem, Manage. Sci., 23 (1976), 27-31.doi: 10.1287/mnsc.23.1.27. |
[14] |
C. H. Papadimitriou and K. Steiglitz, "Combinatorial Optimization: Algorithms and Complexity," Prentice-Hall, 1982. |
[15] |
D. Pisinger and P. Toth, Knapsack problems, in "Handbook of Combinatorial Optimization" (eds. D-Z. Du and P. Pardalos), (1998), Kluwer Academic Publishers, 299-428. |
[16] |
R. W. Rosenthal, A class of games possessing pure-strategy Nash equilibrium, Int. J. Game Theory, 2 (1973), 65-67.doi: 10.1007/BF01737559. |
[17] |
T. Roughgarden and É. Tardos, How bad is selfish routing?, in "Proc. 41th IEEE Symp. on Foundations of Computer Science," (2000), 93-102. |
[18] |
É. Tardos, Network games, in "Proc. 36th ACM Symp. on Theory of Computing," (2004), 341-342. |
[19] |
A. Vetta, Nash equilibria in competitive societies, with applications to facility location, traffic routing and auctions, in "Proc. 43th IEEE Symp. on Foundations of Computer Science," (2002), 416-425. |
[20] |
Z. Wang, W. Xing and S.-C. Fang, Two-group knapsack game, Theor. Comput. Sci., 411 (2010), 1094-1103.doi: 10.1016/j.tcs.2009.12.002. |