October  2010, 6(4): 861-880. doi: 10.3934/jimo.2010.6.861

Adaptive control of nonlinear systems using fuzzy systems

1. 

Dep. of Elec. Eng., Higher Technological Institute, Ramadan 10th City, Egypt

Received  March 2007 Revised  June 2010 Published  September 2010

In this paper we consider the adaptive control problem for a class of systems governed by nonlinear differential equations. Using Takagi-Sugeno approach, we have proposed a fuzzy model, which is linear in nature, the behavior of which is close to that of the unknown (nonlinear) plant. Based on this fuzzy model, we have proposed certain control structure with the help of which the plant output is capable of tracking certain desired trajectory. Using a suitable objective function and variation arguments, we have developed a set of necessary conditions with the help of which the parameters of the proposed fuzzy model and controller can be determined. Based on these necessary conditions, a numerical scheme is presented for computing the unknowns. Further, the question of continuous dependence of the proposed estimator and controller on system parameters (robustness) has been studied. Finally, the proposed adaptive control scheme has been applied to two different examples to illustrate the effectiveness of the proposed adaptive control scheme.
Citation: Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861
References:
[1]

N. Ahmed, "Elements of Finite Dimensional Systems and Control Theory," Pitman Monographs and Surveys in Pure and Applied Mathematics, 37, Longman Scientific and Technical, Harlow; John Wiley & Sons, Inc., New York, 1988.

[2]

M. Alata and K. Demirli, Adaptive control of a class of nonlinear systems with first order Parameterized Sugeno fuzzy approximator, IEEE Trans. on Syst., Man and Cybern., Part C, (2001), 410-419.

[3]

G. Cybenko, Approximation by superposition of sigmoidal functions, Math. Contr. Signals Syst., 2 (1989), 303-314. doi: 10.1007/BF02551274.

[4]

T. Dabbous, Filtering of linear partially observed stochastic systems: The fuzzy logic approach, Dynamic and Contr., 11 (2001), 315-331. doi: 10.1023/A:1020898203511.

[5]

T. Dabbous, Fuzzy optimal control for bilinear stochastic systems with fuzzy parameters, Dynamic and Contr., 11 (2001), 243-259. doi: 10.1023/A:1015224002970.

[6]

T. Dabbous and M. Bayoumi, Optimal control for partially observed nonlinear deterministic systems with fuzzy parameters, Dynamic and Contr., 11 (2001), 353-370. doi: 10.1023/A:1020867121258.

[7]

A. Fradkov, Speed-gradient scheme and its applications in adaptive control, Aut. Remote Control, 40 (1979), 1333-1342.

[8]

F. Girosi and T. Poggio, Network and best approximation property, Biol. Cybern., 63 (1990), 169-179. doi: 10.1007/BF00195855.

[9]

T. Johansen and B. Foss, Constructing NARMAX models using ARMAX models, Int. J. Contr., 58 (1993), 1125-1153. doi: 10.1080/00207179308923046.

[10]

T. Johansen and P. Ioannu, Robust adaptive control of minimum phase nonlinear systems, Adaptive Control Signal Processing, 10 (1996), 61-78. doi: 10.1002/(SICI)1099-1115(199601)10:1<61::AID-ACS387>3.0.CO;2-H.

[11]

L. Karsenti, Adaptive tracking strategy for a class of nonlinear systems, IEEE Trans. on Aut. Contr., 43 (1998), 1272-1279.

[12]

M. Krstic and L. Kanellakopoulos, "Nonlinear Adaptive Control Design," Wiely, New York, 1995.

[13]

Panteley E. Loria, A. and H. Nijmeijer, Control of chaotic duffin equation with uncertainty in all parameters, IEEE Trans. on Circuit Sys., 45 (1998), 1252-1255. doi: 10.1109/81.736558.

[14]

R. Marino and P. Tomel, Global adaptive feedback control of nonlinear systems: Part II: Nonliear parameterization, IEEE Trans. Aut. Control, 38 (1993), 17-48. doi: 10.1109/9.186309.

[15]

R. Marino and P. Tomel, "Nonlinear Adaptive Control Design: Geometric, Adaptive and Robust," Prentic-Hall, London, 1995.

[16]

A. Morris and A Montague, Artificial neural networks: Studies in process modeling and control, Trans. ICHEME, 70, Part A, (1994), 3-19.

[17]

J. Park and T. Sandberg, Universal approximation using radial function networks, Neural Comp., 3 (1991), 246-257. doi: 10.1162/neco.1991.3.2.246.

[18]

T. Takagi and M. Sugeno, Fuzzy identification of systems and its application to modeling and control, IEEE Trans. on Sys., Man and Cybern., SMC-15, (1985), 116-132.

[19]

L. Wang, "Adaptive Fuzzy Systems and Control," Prentice-Hall, New Jersey, 1994.

[20]

L. Wang and J. Mendel, Back propagation fuzzy system as nonlinear system identifier, Proc. IEEE Int. Conf. on Fuzzy Systems, (1992), 1409-1419.

[21]

A. Yesidirek and F. Lewis, Feedback linearization using neural networks, Automatica, 31 (1995), 1659-1664. doi: 10.1016/0005-1098(95)00078-B.

[22]

T. Zhang and C. Hang, Adaptive control of first order systems with nonlinear parameterization, IEEE Trans. Aut. Control, 45 (2000), 1512-1516. doi: 10.1109/9.871761.

show all references

References:
[1]

N. Ahmed, "Elements of Finite Dimensional Systems and Control Theory," Pitman Monographs and Surveys in Pure and Applied Mathematics, 37, Longman Scientific and Technical, Harlow; John Wiley & Sons, Inc., New York, 1988.

[2]

M. Alata and K. Demirli, Adaptive control of a class of nonlinear systems with first order Parameterized Sugeno fuzzy approximator, IEEE Trans. on Syst., Man and Cybern., Part C, (2001), 410-419.

[3]

G. Cybenko, Approximation by superposition of sigmoidal functions, Math. Contr. Signals Syst., 2 (1989), 303-314. doi: 10.1007/BF02551274.

[4]

T. Dabbous, Filtering of linear partially observed stochastic systems: The fuzzy logic approach, Dynamic and Contr., 11 (2001), 315-331. doi: 10.1023/A:1020898203511.

[5]

T. Dabbous, Fuzzy optimal control for bilinear stochastic systems with fuzzy parameters, Dynamic and Contr., 11 (2001), 243-259. doi: 10.1023/A:1015224002970.

[6]

T. Dabbous and M. Bayoumi, Optimal control for partially observed nonlinear deterministic systems with fuzzy parameters, Dynamic and Contr., 11 (2001), 353-370. doi: 10.1023/A:1020867121258.

[7]

A. Fradkov, Speed-gradient scheme and its applications in adaptive control, Aut. Remote Control, 40 (1979), 1333-1342.

[8]

F. Girosi and T. Poggio, Network and best approximation property, Biol. Cybern., 63 (1990), 169-179. doi: 10.1007/BF00195855.

[9]

T. Johansen and B. Foss, Constructing NARMAX models using ARMAX models, Int. J. Contr., 58 (1993), 1125-1153. doi: 10.1080/00207179308923046.

[10]

T. Johansen and P. Ioannu, Robust adaptive control of minimum phase nonlinear systems, Adaptive Control Signal Processing, 10 (1996), 61-78. doi: 10.1002/(SICI)1099-1115(199601)10:1<61::AID-ACS387>3.0.CO;2-H.

[11]

L. Karsenti, Adaptive tracking strategy for a class of nonlinear systems, IEEE Trans. on Aut. Contr., 43 (1998), 1272-1279.

[12]

M. Krstic and L. Kanellakopoulos, "Nonlinear Adaptive Control Design," Wiely, New York, 1995.

[13]

Panteley E. Loria, A. and H. Nijmeijer, Control of chaotic duffin equation with uncertainty in all parameters, IEEE Trans. on Circuit Sys., 45 (1998), 1252-1255. doi: 10.1109/81.736558.

[14]

R. Marino and P. Tomel, Global adaptive feedback control of nonlinear systems: Part II: Nonliear parameterization, IEEE Trans. Aut. Control, 38 (1993), 17-48. doi: 10.1109/9.186309.

[15]

R. Marino and P. Tomel, "Nonlinear Adaptive Control Design: Geometric, Adaptive and Robust," Prentic-Hall, London, 1995.

[16]

A. Morris and A Montague, Artificial neural networks: Studies in process modeling and control, Trans. ICHEME, 70, Part A, (1994), 3-19.

[17]

J. Park and T. Sandberg, Universal approximation using radial function networks, Neural Comp., 3 (1991), 246-257. doi: 10.1162/neco.1991.3.2.246.

[18]

T. Takagi and M. Sugeno, Fuzzy identification of systems and its application to modeling and control, IEEE Trans. on Sys., Man and Cybern., SMC-15, (1985), 116-132.

[19]

L. Wang, "Adaptive Fuzzy Systems and Control," Prentice-Hall, New Jersey, 1994.

[20]

L. Wang and J. Mendel, Back propagation fuzzy system as nonlinear system identifier, Proc. IEEE Int. Conf. on Fuzzy Systems, (1992), 1409-1419.

[21]

A. Yesidirek and F. Lewis, Feedback linearization using neural networks, Automatica, 31 (1995), 1659-1664. doi: 10.1016/0005-1098(95)00078-B.

[22]

T. Zhang and C. Hang, Adaptive control of first order systems with nonlinear parameterization, IEEE Trans. Aut. Control, 45 (2000), 1512-1516. doi: 10.1109/9.871761.

[1]

Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 103-113. doi: 10.3934/naco.2014.4.103

[2]

Qi Yang, Lei Wang, Enmin Feng, Hongchao Yin, Zhilong Xiu. Identification and robustness analysis of nonlinear hybrid dynamical system of genetic regulation in continuous culture. Journal of Industrial and Management Optimization, 2020, 16 (2) : 579-599. doi: 10.3934/jimo.2018168

[3]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[4]

Peng Cheng, Yanqing Liu, Yanyan Yin, Song Wang, Feng Pan. Fuzzy event-triggered disturbance rejection control of nonlinear systems. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3297-3307. doi: 10.3934/jimo.2020119

[5]

Chongyang Liu, Wenjuan Sun, Xiaopeng Yi. Optimal control of a fractional smoking system. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022071

[6]

Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082

[7]

Miao Yu, Haoyang Lu, Weipeng Shang. A new iterative identification method for damping control of power system in multi-interference. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1773-1790. doi: 10.3934/dcdss.2020104

[8]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[9]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[10]

Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control and Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019

[11]

Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783

[12]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations and Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[13]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control and Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[14]

Renzhao Chen, Xuezhang Hou. An optimal osmotic control problem for a concrete dam system. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2341-2359. doi: 10.3934/cpaa.2021082

[15]

Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006

[16]

Dongyun Wang. Sliding mode observer based control for T-S fuzzy descriptor systems. Mathematical Foundations of Computing, 2022, 5 (1) : 17-32. doi: 10.3934/mfc.2021017

[17]

Ramasamy Kavikumar, Boomipalagan Kaviarasan, Yong-Gwon Lee, Oh-Min Kwon, Rathinasamy Sakthivel, Seong-Gon Choi. Robust dynamic sliding mode control design for interval type-2 fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1839-1858. doi: 10.3934/dcdss.2022014

[18]

Ruitong Wu, Yongming Li, Jun Hu, Wei Liu, Shaocheng Tong. Switching mechanism-based event-triggered fuzzy adaptive control with prescribed performance for MIMO nonlinear systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1713-1731. doi: 10.3934/dcdss.2021168

[19]

Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control and Related Fields, 2020, 10 (2) : 379-403. doi: 10.3934/mcrf.2020002

[20]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]