-
Previous Article
Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service
- JIMO Home
- This Issue
-
Next Article
A new exact penalty function method for continuous inequality constrained optimization problems
Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection
1. | School of Computer Application, KIIT University, Bhubaneswar - 751 024, India |
2. | Department of Applied Mathematics, Andhra University, Visakhapatnam - 530 003, India |
References:
[1] |
Y. Baba, Analysis of $GI$/$M$/$1$ queue with multiple working vacations,, Oper. Res. Lett., 33 (2005), 201.
doi: 10.1016/j.orl.2004.05.006. |
[2] |
A. D. Banik, U. C. Gupta and S. S. Pathak, On the $GI$/$M$/$1$/$N$ queue with multiple working vacations - Anaytic analysis and computation,, Appl. Math. Model., 31 (2007), 1701.
doi: 10.1016/j.apm.2006.05.010. |
[3] |
P. J. Burke, Delays in single-server queues with batch input,, Oper. Res., 23 (1975), 830.
doi: 10.1287/opre.23.4.830. |
[4] |
K. C. Chae, D. E. Lim and W. S. Yang, The $GI$/$M$/$1$ queue and the $GI$/$Geo$/$1$ queue both with single working vacation,, Performance Evaluaton, 68 (2009), 356.
doi: 10.1016/j.peva.2009.01.005. |
[5] |
K. C. Chae, S. M. Lee and H. W. Lee, On stochastic decomposition in the $GI$/$M$/$1$ queue with single exponential vacation,, Oper. Res. Lett., 34 (2006), 706.
doi: 10.1016/j.orl.2005.11.006. |
[6] |
B. T. Doshi, Queueing systems with vacations - A survey,, Queueing Syst., 1 (1986), 29.
doi: 10.1007/BF01149327. |
[7] |
B. T. Doshi, Single server queues with vacations,, Stochastic Analysis of Computer and Communication Systems, (1990), 217.
|
[8] |
F. Karaesmen and S. M. Gupta, The finite capacity $GI$/$M$/$1$ with server vacations,, Journal of the Operational Research Society, 47 (1996), 817. Google Scholar |
[9] |
G. Latouche and V. Ramaswami, "Introduction to Matrix Analytic Methods in Stochastic Modelling,", SIAM $&$ ASA, (1999).
|
[10] |
J. H. Li, N. S. Tian and Z. Y. Ma, Performance analysis of $GI$/$M$/$1$ queue with working vacations and vacation interruption,, Appl. Math. Model., 32 (2008), 2715.
doi: 10.1016/j.apm.2007.09.017. |
[11] |
W. Liu, X. Xu and N. Tian, Some results on the M/M/1 queue with working vacations,, Oper. Res. Lett., 35 (2007), 595.
doi: 10.1016/j.orl.2006.12.007. |
[12] |
K. Sikdar, U. C. Gupta and R. K. Sharma, The analysis of a finite-buffer general input queue with batch arrival and exponential multiple vacations,, Int. J. Oper. Res., 3 (2008), 219.
doi: 10.1504/IJOR.2008.016162. |
[13] |
L. D. Servi and S. G. Finn, $M$/$M$/$1$ queue with working vacations ($M$/$M$/$1$/$WV$),, Performance Evaluaton, 50 (2002), 41.
doi: 10.1016/S0166-5316(02)00057-3. |
[14] |
H. Takagi, "Queueing Analysis - A Foundation of Performance Evaluation : Volume 2, Finite Systems,", North Holland, (1993).
|
[15] |
N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", Springer-Verlag, (2006).
|
[16] |
P. Vijaya Laxmi and U. C. Gupta, A unified approach to analyze the $GI^X$/$M$/$1$/$N$ and $GI$/$E_k$/$1$/$N$ queues,, Proceedings of the International Conference on Stochastic Processes and Their Applications (eds. A. Vijayakumar and M. Sreenivasan), (1998), 206. Google Scholar |
[17] |
D. Wu and H. Takagi, $M$/$G$/$1$ queue with multiple working vacations,, Performance Evaluaton, 63 (2006), 654.
doi: 10.1016/j.peva.2005.05.005. |
[18] |
M. M. Yu, Y. H. Tang and Y. H. Fu, Steady state analysis and computation of the $GI^{[x]}$/$M^b$/$1$/$L$ queue with multiple working vacations and partial batch rejection,, Computers & Industrial Engineering, 56 (2009), 1243.
doi: 10.1016/j.cie.2008.07.013. |
show all references
References:
[1] |
Y. Baba, Analysis of $GI$/$M$/$1$ queue with multiple working vacations,, Oper. Res. Lett., 33 (2005), 201.
doi: 10.1016/j.orl.2004.05.006. |
[2] |
A. D. Banik, U. C. Gupta and S. S. Pathak, On the $GI$/$M$/$1$/$N$ queue with multiple working vacations - Anaytic analysis and computation,, Appl. Math. Model., 31 (2007), 1701.
doi: 10.1016/j.apm.2006.05.010. |
[3] |
P. J. Burke, Delays in single-server queues with batch input,, Oper. Res., 23 (1975), 830.
doi: 10.1287/opre.23.4.830. |
[4] |
K. C. Chae, D. E. Lim and W. S. Yang, The $GI$/$M$/$1$ queue and the $GI$/$Geo$/$1$ queue both with single working vacation,, Performance Evaluaton, 68 (2009), 356.
doi: 10.1016/j.peva.2009.01.005. |
[5] |
K. C. Chae, S. M. Lee and H. W. Lee, On stochastic decomposition in the $GI$/$M$/$1$ queue with single exponential vacation,, Oper. Res. Lett., 34 (2006), 706.
doi: 10.1016/j.orl.2005.11.006. |
[6] |
B. T. Doshi, Queueing systems with vacations - A survey,, Queueing Syst., 1 (1986), 29.
doi: 10.1007/BF01149327. |
[7] |
B. T. Doshi, Single server queues with vacations,, Stochastic Analysis of Computer and Communication Systems, (1990), 217.
|
[8] |
F. Karaesmen and S. M. Gupta, The finite capacity $GI$/$M$/$1$ with server vacations,, Journal of the Operational Research Society, 47 (1996), 817. Google Scholar |
[9] |
G. Latouche and V. Ramaswami, "Introduction to Matrix Analytic Methods in Stochastic Modelling,", SIAM $&$ ASA, (1999).
|
[10] |
J. H. Li, N. S. Tian and Z. Y. Ma, Performance analysis of $GI$/$M$/$1$ queue with working vacations and vacation interruption,, Appl. Math. Model., 32 (2008), 2715.
doi: 10.1016/j.apm.2007.09.017. |
[11] |
W. Liu, X. Xu and N. Tian, Some results on the M/M/1 queue with working vacations,, Oper. Res. Lett., 35 (2007), 595.
doi: 10.1016/j.orl.2006.12.007. |
[12] |
K. Sikdar, U. C. Gupta and R. K. Sharma, The analysis of a finite-buffer general input queue with batch arrival and exponential multiple vacations,, Int. J. Oper. Res., 3 (2008), 219.
doi: 10.1504/IJOR.2008.016162. |
[13] |
L. D. Servi and S. G. Finn, $M$/$M$/$1$ queue with working vacations ($M$/$M$/$1$/$WV$),, Performance Evaluaton, 50 (2002), 41.
doi: 10.1016/S0166-5316(02)00057-3. |
[14] |
H. Takagi, "Queueing Analysis - A Foundation of Performance Evaluation : Volume 2, Finite Systems,", North Holland, (1993).
|
[15] |
N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", Springer-Verlag, (2006).
|
[16] |
P. Vijaya Laxmi and U. C. Gupta, A unified approach to analyze the $GI^X$/$M$/$1$/$N$ and $GI$/$E_k$/$1$/$N$ queues,, Proceedings of the International Conference on Stochastic Processes and Their Applications (eds. A. Vijayakumar and M. Sreenivasan), (1998), 206. Google Scholar |
[17] |
D. Wu and H. Takagi, $M$/$G$/$1$ queue with multiple working vacations,, Performance Evaluaton, 63 (2006), 654.
doi: 10.1016/j.peva.2005.05.005. |
[18] |
M. M. Yu, Y. H. Tang and Y. H. Fu, Steady state analysis and computation of the $GI^{[x]}$/$M^b$/$1$/$L$ queue with multiple working vacations and partial batch rejection,, Computers & Industrial Engineering, 56 (2009), 1243.
doi: 10.1016/j.cie.2008.07.013. |
[1] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[2] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[3] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[4] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[5] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[6] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[7] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[8] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[9] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[10] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[11] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[12] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[13] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[14] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[15] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[16] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]