• Previous Article
    Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service
  • JIMO Home
  • This Issue
  • Next Article
    A new exact penalty function method for continuous inequality constrained optimization problems
October  2010, 6(4): 911-927. doi: 10.3934/jimo.2010.6.911

Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection

1. 

School of Computer Application, KIIT University, Bhubaneswar - 751 024, India

2. 

Department of Applied Mathematics, Andhra University, Visakhapatnam - 530 003, India

Received  December 2009 Revised  July 2010 Published  September 2010

This paper analyzes a finite buffer bulk arrival queueing system with a single working vacation and partial batch rejection in which the inter-arrival and service times are, respectively, arbitrarily and exponentially distributed. Using the supplementary variable and the imbedded Markov chain techniques, we obtain the system length distributions at pre-arrival and arbitrary epochs. We also present Laplace-Stiltjes transform of the actual waiting time distribution in the system. Finally, several performance measures and a variety of numerical results in the form of tables and graphs are discussed.
Citation: Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial & Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911
References:
[1]

Y. Baba, Analysis of $GI$/$M$/$1$ queue with multiple working vacations,, Oper. Res. Lett., 33 (2005), 201.  doi: 10.1016/j.orl.2004.05.006.  Google Scholar

[2]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the $GI$/$M$/$1$/$N$ queue with multiple working vacations - Anaytic analysis and computation,, Appl. Math. Model., 31 (2007), 1701.  doi: 10.1016/j.apm.2006.05.010.  Google Scholar

[3]

P. J. Burke, Delays in single-server queues with batch input,, Oper. Res., 23 (1975), 830.  doi: 10.1287/opre.23.4.830.  Google Scholar

[4]

K. C. Chae, D. E. Lim and W. S. Yang, The $GI$/$M$/$1$ queue and the $GI$/$Geo$/$1$ queue both with single working vacation,, Performance Evaluaton, 68 (2009), 356.  doi: 10.1016/j.peva.2009.01.005.  Google Scholar

[5]

K. C. Chae, S. M. Lee and H. W. Lee, On stochastic decomposition in the $GI$/$M$/$1$ queue with single exponential vacation,, Oper. Res. Lett., 34 (2006), 706.  doi: 10.1016/j.orl.2005.11.006.  Google Scholar

[6]

B. T. Doshi, Queueing systems with vacations - A survey,, Queueing Syst., 1 (1986), 29.  doi: 10.1007/BF01149327.  Google Scholar

[7]

B. T. Doshi, Single server queues with vacations,, Stochastic Analysis of Computer and Communication Systems, (1990), 217.   Google Scholar

[8]

F. Karaesmen and S. M. Gupta, The finite capacity $GI$/$M$/$1$ with server vacations,, Journal of the Operational Research Society, 47 (1996), 817.   Google Scholar

[9]

G. Latouche and V. Ramaswami, "Introduction to Matrix Analytic Methods in Stochastic Modelling,", SIAM $&$ ASA, (1999).   Google Scholar

[10]

J. H. Li, N. S. Tian and Z. Y. Ma, Performance analysis of $GI$/$M$/$1$ queue with working vacations and vacation interruption,, Appl. Math. Model., 32 (2008), 2715.  doi: 10.1016/j.apm.2007.09.017.  Google Scholar

[11]

W. Liu, X. Xu and N. Tian, Some results on the M/M/1 queue with working vacations,, Oper. Res. Lett., 35 (2007), 595.  doi: 10.1016/j.orl.2006.12.007.  Google Scholar

[12]

K. Sikdar, U. C. Gupta and R. K. Sharma, The analysis of a finite-buffer general input queue with batch arrival and exponential multiple vacations,, Int. J. Oper. Res., 3 (2008), 219.  doi: 10.1504/IJOR.2008.016162.  Google Scholar

[13]

L. D. Servi and S. G. Finn, $M$/$M$/$1$ queue with working vacations ($M$/$M$/$1$/$WV$),, Performance Evaluaton, 50 (2002), 41.  doi: 10.1016/S0166-5316(02)00057-3.  Google Scholar

[14]

H. Takagi, "Queueing Analysis - A Foundation of Performance Evaluation : Volume 2, Finite Systems,", North Holland, (1993).   Google Scholar

[15]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", Springer-Verlag, (2006).   Google Scholar

[16]

P. Vijaya Laxmi and U. C. Gupta, A unified approach to analyze the $GI^X$/$M$/$1$/$N$ and $GI$/$E_k$/$1$/$N$ queues,, Proceedings of the International Conference on Stochastic Processes and Their Applications (eds. A. Vijayakumar and M. Sreenivasan), (1998), 206.   Google Scholar

[17]

D. Wu and H. Takagi, $M$/$G$/$1$ queue with multiple working vacations,, Performance Evaluaton, 63 (2006), 654.  doi: 10.1016/j.peva.2005.05.005.  Google Scholar

[18]

M. M. Yu, Y. H. Tang and Y. H. Fu, Steady state analysis and computation of the $GI^{[x]}$/$M^b$/$1$/$L$ queue with multiple working vacations and partial batch rejection,, Computers & Industrial Engineering, 56 (2009), 1243.  doi: 10.1016/j.cie.2008.07.013.  Google Scholar

show all references

References:
[1]

Y. Baba, Analysis of $GI$/$M$/$1$ queue with multiple working vacations,, Oper. Res. Lett., 33 (2005), 201.  doi: 10.1016/j.orl.2004.05.006.  Google Scholar

[2]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the $GI$/$M$/$1$/$N$ queue with multiple working vacations - Anaytic analysis and computation,, Appl. Math. Model., 31 (2007), 1701.  doi: 10.1016/j.apm.2006.05.010.  Google Scholar

[3]

P. J. Burke, Delays in single-server queues with batch input,, Oper. Res., 23 (1975), 830.  doi: 10.1287/opre.23.4.830.  Google Scholar

[4]

K. C. Chae, D. E. Lim and W. S. Yang, The $GI$/$M$/$1$ queue and the $GI$/$Geo$/$1$ queue both with single working vacation,, Performance Evaluaton, 68 (2009), 356.  doi: 10.1016/j.peva.2009.01.005.  Google Scholar

[5]

K. C. Chae, S. M. Lee and H. W. Lee, On stochastic decomposition in the $GI$/$M$/$1$ queue with single exponential vacation,, Oper. Res. Lett., 34 (2006), 706.  doi: 10.1016/j.orl.2005.11.006.  Google Scholar

[6]

B. T. Doshi, Queueing systems with vacations - A survey,, Queueing Syst., 1 (1986), 29.  doi: 10.1007/BF01149327.  Google Scholar

[7]

B. T. Doshi, Single server queues with vacations,, Stochastic Analysis of Computer and Communication Systems, (1990), 217.   Google Scholar

[8]

F. Karaesmen and S. M. Gupta, The finite capacity $GI$/$M$/$1$ with server vacations,, Journal of the Operational Research Society, 47 (1996), 817.   Google Scholar

[9]

G. Latouche and V. Ramaswami, "Introduction to Matrix Analytic Methods in Stochastic Modelling,", SIAM $&$ ASA, (1999).   Google Scholar

[10]

J. H. Li, N. S. Tian and Z. Y. Ma, Performance analysis of $GI$/$M$/$1$ queue with working vacations and vacation interruption,, Appl. Math. Model., 32 (2008), 2715.  doi: 10.1016/j.apm.2007.09.017.  Google Scholar

[11]

W. Liu, X. Xu and N. Tian, Some results on the M/M/1 queue with working vacations,, Oper. Res. Lett., 35 (2007), 595.  doi: 10.1016/j.orl.2006.12.007.  Google Scholar

[12]

K. Sikdar, U. C. Gupta and R. K. Sharma, The analysis of a finite-buffer general input queue with batch arrival and exponential multiple vacations,, Int. J. Oper. Res., 3 (2008), 219.  doi: 10.1504/IJOR.2008.016162.  Google Scholar

[13]

L. D. Servi and S. G. Finn, $M$/$M$/$1$ queue with working vacations ($M$/$M$/$1$/$WV$),, Performance Evaluaton, 50 (2002), 41.  doi: 10.1016/S0166-5316(02)00057-3.  Google Scholar

[14]

H. Takagi, "Queueing Analysis - A Foundation of Performance Evaluation : Volume 2, Finite Systems,", North Holland, (1993).   Google Scholar

[15]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", Springer-Verlag, (2006).   Google Scholar

[16]

P. Vijaya Laxmi and U. C. Gupta, A unified approach to analyze the $GI^X$/$M$/$1$/$N$ and $GI$/$E_k$/$1$/$N$ queues,, Proceedings of the International Conference on Stochastic Processes and Their Applications (eds. A. Vijayakumar and M. Sreenivasan), (1998), 206.   Google Scholar

[17]

D. Wu and H. Takagi, $M$/$G$/$1$ queue with multiple working vacations,, Performance Evaluaton, 63 (2006), 654.  doi: 10.1016/j.peva.2005.05.005.  Google Scholar

[18]

M. M. Yu, Y. H. Tang and Y. H. Fu, Steady state analysis and computation of the $GI^{[x]}$/$M^b$/$1$/$L$ queue with multiple working vacations and partial batch rejection,, Computers & Industrial Engineering, 56 (2009), 1243.  doi: 10.1016/j.cie.2008.07.013.  Google Scholar

[1]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[2]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[3]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[4]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[5]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[6]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[7]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[8]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[9]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[10]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[11]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[12]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[13]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[14]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[15]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[16]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]