January  2011, 7(1): 1-18. doi: 10.3934/jimo.2011.7.1

On the admission control and demand management in a two-station tandem production system

1. 

College of Business Administration, Ewha Womans University, Seoul, South Korea

Received  April 2009 Revised  September 2010 Published  January 2011

This paper considers a two-station tandem production system consisting of make-to-stock and make-to-order facilities. The make-to-stock facility produces components which are served for external demands as well as internal make-to-order operations while the make-to-order facility processes customer orders with the option to accept or reject. We address the problem of coordinating the decision of when to accept customer order and when to satisfy component demand that maximizes the total expected discounted profit. To deal with this issue, we present a Markov decision process model of two-station tandem queueing system and characterize the structure of the optimal policy. We investigate the marginal impacts of system parameters on the optimal policy and implement a numerical experiment for comparing the performance between the optimal policy and the static policy with two fixed thresholds.
Citation: Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial and Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1
References:
[1]

S. Benjaafar and M. Elhafsi, Production and inventory control of a single product assemble-to-order system with multiple customer classes, Management Science, 52 (2006), 1896-1912. doi: 10.1287/mnsc.1060.0588.

[2]

M. Barut and V. Sridharan, Revenue management in order-driven production systems, Decision Science, 36 (2005), 287-316. doi: 10.1111/j.1540-5414.2005.00074.x.

[3]

S. Carr and I. Duenyas, Optimal admission control and sequencing in a Make-To-Stock/Make-To-Order production system, Operations Research, 48 (2000), 709-720. doi: 10.1287/opre.48.5.709.12401.

[4]

K. Chang and Y. Lu, Tandem queues production systems with base stocks, Proceedings of the 4th International Conference on Networked Computing and Advanced Information Management, (2008).

[5]

F. de Vericourt, F. Karaesmen and Y. Dallery, Optimal stock allocation for a capacitated supply system, Management Science, 48 (2002), 1486-1501. doi: 10.1287/mnsc.48.11.1486.263.

[6]

M. Elhafsi, Optimal integrated production and inventory control of an assemble-to-order system with multiple non-unitary demand classes, European Journal of Operational Research, 194 (2009), 127-142. doi: 10.1016/j.ejor.2007.12.007.

[7]

A. Y. Ha, Inventory rationing in a make-to-stock production system with several demand classes and lost sales,, Management Science, 43 (): 1093.  doi: 10.1287/mnsc.43.8.1093.

[8]

A. Y. Ha, Stock rationing policy for a make-to-stock production system with two priority classes and backordering,, Naval Research Logistics, 44 (): 457.  doi: 10.1002/(SICI)1520-6750(199708)44:5<457::AID-NAV4>3.0.CO;2-3.

[9]

A. Y. Ha, Optimal dynamic scheduling policy for a make-to-stock production system,, Operations Research, 45 (): 42.  doi: 10.1287/opre.45.1.42.

[10]

F. H. Harris and J. P. Pinder, A revenue-management approach to demand management and order booking in assemble-to-order manufacturing, Journal of Operations Management, 13 (1995), 299-309. doi: 10.1016/0272-6963(95)00029-1.

[11]

S. Lippman, Applying a new device in the optimization of exponential queueing systems, Operations Research, 23 (1975), 687-710. doi: 10.1287/opre.23.4.687.

[12]

M. Modarres and M. Sharifyazdi, Revenue management approach to stochastic capacity allocation problem, European Journal of Operational Research, 192 (2009), 442-459. doi: 10.1016/j.ejor.2007.09.044.

[13]

E. Porteus, Conditions for characterizing the structure of optimal strategies in infinite-horizon dynamic programs, Journal of Optimization Theory and Applications, 36 (1982), 419-432. doi: 10.1007/BF00934355.

[14]

M. Puterman, "Markov Decision Processes," John Wiley and Sons, 2005.

[15]

S. Stidham, Optimal control of admission to a queueing system, IEEE Transactions on Automatic Control, 8 (1985), 705-713. doi: 10.1109/TAC.1985.1104054.

[16]

R. Teunter and W. Haneveld, Dynamic inventory rationing strategies for inventory systems with two demand classes, Poisson demand and backordering, European Journal of Operational Research, 190 (2008), 156-178. doi: 10.1016/j.ejor.2007.06.009.

[17]

M. P. Van Oyen, Monotonicity of optimal performance measures for polling systems, Probability in the Engineering and Informational Sciences, 11 (1997), 219-228. doi: 10.1017/S0269964800004770.

[18]

M. H. Veatch and L. M. Wein, Optimal control of a two-station tandem production/inventory system, Operations Research, 42 (1994), 337-350. doi: 10.1287/opre.42.2.337.

[19]

J. Yang, X. Qi, Y. Xia and G. Yu, Inventory control with Markovian capacity and the option of order rejection, European Journal of Operational Research, 174 (2006), 622-645. doi: 10.1016/j.ejor.2004.12.016.

show all references

References:
[1]

S. Benjaafar and M. Elhafsi, Production and inventory control of a single product assemble-to-order system with multiple customer classes, Management Science, 52 (2006), 1896-1912. doi: 10.1287/mnsc.1060.0588.

[2]

M. Barut and V. Sridharan, Revenue management in order-driven production systems, Decision Science, 36 (2005), 287-316. doi: 10.1111/j.1540-5414.2005.00074.x.

[3]

S. Carr and I. Duenyas, Optimal admission control and sequencing in a Make-To-Stock/Make-To-Order production system, Operations Research, 48 (2000), 709-720. doi: 10.1287/opre.48.5.709.12401.

[4]

K. Chang and Y. Lu, Tandem queues production systems with base stocks, Proceedings of the 4th International Conference on Networked Computing and Advanced Information Management, (2008).

[5]

F. de Vericourt, F. Karaesmen and Y. Dallery, Optimal stock allocation for a capacitated supply system, Management Science, 48 (2002), 1486-1501. doi: 10.1287/mnsc.48.11.1486.263.

[6]

M. Elhafsi, Optimal integrated production and inventory control of an assemble-to-order system with multiple non-unitary demand classes, European Journal of Operational Research, 194 (2009), 127-142. doi: 10.1016/j.ejor.2007.12.007.

[7]

A. Y. Ha, Inventory rationing in a make-to-stock production system with several demand classes and lost sales,, Management Science, 43 (): 1093.  doi: 10.1287/mnsc.43.8.1093.

[8]

A. Y. Ha, Stock rationing policy for a make-to-stock production system with two priority classes and backordering,, Naval Research Logistics, 44 (): 457.  doi: 10.1002/(SICI)1520-6750(199708)44:5<457::AID-NAV4>3.0.CO;2-3.

[9]

A. Y. Ha, Optimal dynamic scheduling policy for a make-to-stock production system,, Operations Research, 45 (): 42.  doi: 10.1287/opre.45.1.42.

[10]

F. H. Harris and J. P. Pinder, A revenue-management approach to demand management and order booking in assemble-to-order manufacturing, Journal of Operations Management, 13 (1995), 299-309. doi: 10.1016/0272-6963(95)00029-1.

[11]

S. Lippman, Applying a new device in the optimization of exponential queueing systems, Operations Research, 23 (1975), 687-710. doi: 10.1287/opre.23.4.687.

[12]

M. Modarres and M. Sharifyazdi, Revenue management approach to stochastic capacity allocation problem, European Journal of Operational Research, 192 (2009), 442-459. doi: 10.1016/j.ejor.2007.09.044.

[13]

E. Porteus, Conditions for characterizing the structure of optimal strategies in infinite-horizon dynamic programs, Journal of Optimization Theory and Applications, 36 (1982), 419-432. doi: 10.1007/BF00934355.

[14]

M. Puterman, "Markov Decision Processes," John Wiley and Sons, 2005.

[15]

S. Stidham, Optimal control of admission to a queueing system, IEEE Transactions on Automatic Control, 8 (1985), 705-713. doi: 10.1109/TAC.1985.1104054.

[16]

R. Teunter and W. Haneveld, Dynamic inventory rationing strategies for inventory systems with two demand classes, Poisson demand and backordering, European Journal of Operational Research, 190 (2008), 156-178. doi: 10.1016/j.ejor.2007.06.009.

[17]

M. P. Van Oyen, Monotonicity of optimal performance measures for polling systems, Probability in the Engineering and Informational Sciences, 11 (1997), 219-228. doi: 10.1017/S0269964800004770.

[18]

M. H. Veatch and L. M. Wein, Optimal control of a two-station tandem production/inventory system, Operations Research, 42 (1994), 337-350. doi: 10.1287/opre.42.2.337.

[19]

J. Yang, X. Qi, Y. Xia and G. Yu, Inventory control with Markovian capacity and the option of order rejection, European Journal of Operational Research, 174 (2006), 622-645. doi: 10.1016/j.ejor.2004.12.016.

[1]

Wai-Ki Ching, Tang Li, Sin-Man Choi, Issic K. C. Leung. A tandem queueing system with applications to pricing strategy. Journal of Industrial and Management Optimization, 2009, 5 (1) : 103-114. doi: 10.3934/jimo.2009.5.103

[2]

Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial and Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167

[3]

Vladimir Turetsky, Valery Y. Glizer. Optimal decision in a Statistical Process Control with cubic loss. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021096

[4]

Madhu Jain, Sudeep Singh Sanga. Admission control for finite capacity queueing model with general retrial times and state-dependent rates. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2625-2649. doi: 10.3934/jimo.2019073

[5]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[6]

Jin Soo Park, Kyung Jae Kim, Yun Han Bae, Bong Dae Choi. Admission control by dynamic bandwidth reservation using road layout and bidirectional navigator in wireless multimedia networks. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 627-638. doi: 10.3934/naco.2011.1.627

[7]

Haiying Liu, Wenjie Bi, Kok Lay Teo, Naxing Liu. Dynamic optimal decision making for manufacturers with limited attention based on sparse dynamic programming. Journal of Industrial and Management Optimization, 2019, 15 (2) : 445-464. doi: 10.3934/jimo.2018050

[8]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial and Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[9]

Shoude Li. A dynamic analysis of a monopolist's product and process innovation with nonlinear demand and expected quality effects. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022056

[10]

Gang Chen, Zaiming Liu, Jinbiao Wu. Optimal threshold control of a retrial queueing system with finite buffer. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1537-1552. doi: 10.3934/jimo.2017006

[11]

Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics and Games, 2014, 1 (4) : 639-659. doi: 10.3934/jdg.2014.1.639

[12]

Guirong Jiang, Qishao Lu, Linping Peng. Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences & Engineering, 2005, 2 (2) : 329-344. doi: 10.3934/mbe.2005.2.329

[13]

Mourad Azi, Mohand Ouamer Bibi. Optimal control of a dynamical system with intermediate phase constraints and applications in cash management. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 279-291. doi: 10.3934/naco.2021005

[14]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[15]

Yuan Zhao, Shunfu Jin, Wuyi Yue. Adjustable admission control with threshold in centralized CR networks: Analysis and optimization. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1393-1408. doi: 10.3934/jimo.2015.11.1393

[16]

Harald Held, Gabriela Martinez, Philipp Emanuel Stelzig. Stochastic programming approach for energy management in electric microgrids. Numerical Algebra, Control and Optimization, 2014, 4 (3) : 241-267. doi: 10.3934/naco.2014.4.241

[17]

Silvia Faggian. Boundary control problems with convex cost and dynamic programming in infinite dimension part II: Existence for HJB. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 323-346. doi: 10.3934/dcds.2005.12.323

[18]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control and Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[19]

Vladimir Djordjevic, Vladimir Stojanovic, Hongfeng Tao, Xiaona Song, Shuping He, Weinan Gao. Data-driven control of hydraulic servo actuator based on adaptive dynamic programming. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1633-1650. doi: 10.3934/dcdss.2021145

[20]

Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial and Management Optimization, 2020, 16 (2) : 965-990. doi: 10.3934/jimo.2018188

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]