January  2011, 7(1): 1-18. doi: 10.3934/jimo.2011.7.1

On the admission control and demand management in a two-station tandem production system

1. 

College of Business Administration, Ewha Womans University, Seoul, South Korea

Received  April 2009 Revised  September 2010 Published  January 2011

This paper considers a two-station tandem production system consisting of make-to-stock and make-to-order facilities. The make-to-stock facility produces components which are served for external demands as well as internal make-to-order operations while the make-to-order facility processes customer orders with the option to accept or reject. We address the problem of coordinating the decision of when to accept customer order and when to satisfy component demand that maximizes the total expected discounted profit. To deal with this issue, we present a Markov decision process model of two-station tandem queueing system and characterize the structure of the optimal policy. We investigate the marginal impacts of system parameters on the optimal policy and implement a numerical experiment for comparing the performance between the optimal policy and the static policy with two fixed thresholds.
Citation: Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial & Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1
References:
[1]

S. Benjaafar and M. Elhafsi, Production and inventory control of a single product assemble-to-order system with multiple customer classes,, Management Science, 52 (2006), 1896.  doi: 10.1287/mnsc.1060.0588.  Google Scholar

[2]

M. Barut and V. Sridharan, Revenue management in order-driven production systems,, Decision Science, 36 (2005), 287.  doi: 10.1111/j.1540-5414.2005.00074.x.  Google Scholar

[3]

S. Carr and I. Duenyas, Optimal admission control and sequencing in a Make-To-Stock/Make-To-Order production system,, Operations Research, 48 (2000), 709.  doi: 10.1287/opre.48.5.709.12401.  Google Scholar

[4]

K. Chang and Y. Lu, Tandem queues production systems with base stocks,, Proceedings of the 4th International Conference on Networked Computing and Advanced Information Management, (2008).   Google Scholar

[5]

F. de Vericourt, F. Karaesmen and Y. Dallery, Optimal stock allocation for a capacitated supply system,, Management Science, 48 (2002), 1486.  doi: 10.1287/mnsc.48.11.1486.263.  Google Scholar

[6]

M. Elhafsi, Optimal integrated production and inventory control of an assemble-to-order system with multiple non-unitary demand classes,, European Journal of Operational Research, 194 (2009), 127.  doi: 10.1016/j.ejor.2007.12.007.  Google Scholar

[7]

A. Y. Ha, Inventory rationing in a make-to-stock production system with several demand classes and lost sales,, Management Science, 43 (): 1093.  doi: 10.1287/mnsc.43.8.1093.  Google Scholar

[8]

A. Y. Ha, Stock rationing policy for a make-to-stock production system with two priority classes and backordering,, Naval Research Logistics, 44 (): 457.  doi: 10.1002/(SICI)1520-6750(199708)44:5<457::AID-NAV4>3.0.CO;2-3.  Google Scholar

[9]

A. Y. Ha, Optimal dynamic scheduling policy for a make-to-stock production system,, Operations Research, 45 (): 42.  doi: 10.1287/opre.45.1.42.  Google Scholar

[10]

F. H. Harris and J. P. Pinder, A revenue-management approach to demand management and order booking in assemble-to-order manufacturing,, Journal of Operations Management, 13 (1995), 299.  doi: 10.1016/0272-6963(95)00029-1.  Google Scholar

[11]

S. Lippman, Applying a new device in the optimization of exponential queueing systems,, Operations Research, 23 (1975), 687.  doi: 10.1287/opre.23.4.687.  Google Scholar

[12]

M. Modarres and M. Sharifyazdi, Revenue management approach to stochastic capacity allocation problem,, European Journal of Operational Research, 192 (2009), 442.  doi: 10.1016/j.ejor.2007.09.044.  Google Scholar

[13]

E. Porteus, Conditions for characterizing the structure of optimal strategies in infinite-horizon dynamic programs,, Journal of Optimization Theory and Applications, 36 (1982), 419.  doi: 10.1007/BF00934355.  Google Scholar

[14]

M. Puterman, "Markov Decision Processes,", John Wiley and Sons, (2005).   Google Scholar

[15]

S. Stidham, Optimal control of admission to a queueing system,, IEEE Transactions on Automatic Control, 8 (1985), 705.  doi: 10.1109/TAC.1985.1104054.  Google Scholar

[16]

R. Teunter and W. Haneveld, Dynamic inventory rationing strategies for inventory systems with two demand classes, Poisson demand and backordering,, European Journal of Operational Research, 190 (2008), 156.  doi: 10.1016/j.ejor.2007.06.009.  Google Scholar

[17]

M. P. Van Oyen, Monotonicity of optimal performance measures for polling systems,, Probability in the Engineering and Informational Sciences, 11 (1997), 219.  doi: 10.1017/S0269964800004770.  Google Scholar

[18]

M. H. Veatch and L. M. Wein, Optimal control of a two-station tandem production/inventory system,, Operations Research, 42 (1994), 337.  doi: 10.1287/opre.42.2.337.  Google Scholar

[19]

J. Yang, X. Qi, Y. Xia and G. Yu, Inventory control with Markovian capacity and the option of order rejection,, European Journal of Operational Research, 174 (2006), 622.  doi: 10.1016/j.ejor.2004.12.016.  Google Scholar

show all references

References:
[1]

S. Benjaafar and M. Elhafsi, Production and inventory control of a single product assemble-to-order system with multiple customer classes,, Management Science, 52 (2006), 1896.  doi: 10.1287/mnsc.1060.0588.  Google Scholar

[2]

M. Barut and V. Sridharan, Revenue management in order-driven production systems,, Decision Science, 36 (2005), 287.  doi: 10.1111/j.1540-5414.2005.00074.x.  Google Scholar

[3]

S. Carr and I. Duenyas, Optimal admission control and sequencing in a Make-To-Stock/Make-To-Order production system,, Operations Research, 48 (2000), 709.  doi: 10.1287/opre.48.5.709.12401.  Google Scholar

[4]

K. Chang and Y. Lu, Tandem queues production systems with base stocks,, Proceedings of the 4th International Conference on Networked Computing and Advanced Information Management, (2008).   Google Scholar

[5]

F. de Vericourt, F. Karaesmen and Y. Dallery, Optimal stock allocation for a capacitated supply system,, Management Science, 48 (2002), 1486.  doi: 10.1287/mnsc.48.11.1486.263.  Google Scholar

[6]

M. Elhafsi, Optimal integrated production and inventory control of an assemble-to-order system with multiple non-unitary demand classes,, European Journal of Operational Research, 194 (2009), 127.  doi: 10.1016/j.ejor.2007.12.007.  Google Scholar

[7]

A. Y. Ha, Inventory rationing in a make-to-stock production system with several demand classes and lost sales,, Management Science, 43 (): 1093.  doi: 10.1287/mnsc.43.8.1093.  Google Scholar

[8]

A. Y. Ha, Stock rationing policy for a make-to-stock production system with two priority classes and backordering,, Naval Research Logistics, 44 (): 457.  doi: 10.1002/(SICI)1520-6750(199708)44:5<457::AID-NAV4>3.0.CO;2-3.  Google Scholar

[9]

A. Y. Ha, Optimal dynamic scheduling policy for a make-to-stock production system,, Operations Research, 45 (): 42.  doi: 10.1287/opre.45.1.42.  Google Scholar

[10]

F. H. Harris and J. P. Pinder, A revenue-management approach to demand management and order booking in assemble-to-order manufacturing,, Journal of Operations Management, 13 (1995), 299.  doi: 10.1016/0272-6963(95)00029-1.  Google Scholar

[11]

S. Lippman, Applying a new device in the optimization of exponential queueing systems,, Operations Research, 23 (1975), 687.  doi: 10.1287/opre.23.4.687.  Google Scholar

[12]

M. Modarres and M. Sharifyazdi, Revenue management approach to stochastic capacity allocation problem,, European Journal of Operational Research, 192 (2009), 442.  doi: 10.1016/j.ejor.2007.09.044.  Google Scholar

[13]

E. Porteus, Conditions for characterizing the structure of optimal strategies in infinite-horizon dynamic programs,, Journal of Optimization Theory and Applications, 36 (1982), 419.  doi: 10.1007/BF00934355.  Google Scholar

[14]

M. Puterman, "Markov Decision Processes,", John Wiley and Sons, (2005).   Google Scholar

[15]

S. Stidham, Optimal control of admission to a queueing system,, IEEE Transactions on Automatic Control, 8 (1985), 705.  doi: 10.1109/TAC.1985.1104054.  Google Scholar

[16]

R. Teunter and W. Haneveld, Dynamic inventory rationing strategies for inventory systems with two demand classes, Poisson demand and backordering,, European Journal of Operational Research, 190 (2008), 156.  doi: 10.1016/j.ejor.2007.06.009.  Google Scholar

[17]

M. P. Van Oyen, Monotonicity of optimal performance measures for polling systems,, Probability in the Engineering and Informational Sciences, 11 (1997), 219.  doi: 10.1017/S0269964800004770.  Google Scholar

[18]

M. H. Veatch and L. M. Wein, Optimal control of a two-station tandem production/inventory system,, Operations Research, 42 (1994), 337.  doi: 10.1287/opre.42.2.337.  Google Scholar

[19]

J. Yang, X. Qi, Y. Xia and G. Yu, Inventory control with Markovian capacity and the option of order rejection,, European Journal of Operational Research, 174 (2006), 622.  doi: 10.1016/j.ejor.2004.12.016.  Google Scholar

[1]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[4]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[5]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[6]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[7]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[8]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[9]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[10]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[11]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[12]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[13]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[14]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[15]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[16]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[17]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[18]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[19]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[20]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]