-
Previous Article
A queueing analysis of multi-purpose production facility's operations
- JIMO Home
- This Issue
- Next Article
On the admission control and demand management in a two-station tandem production system
1. | College of Business Administration, Ewha Womans University, Seoul, South Korea |
References:
[1] |
S. Benjaafar and M. Elhafsi, Production and inventory control of a single product assemble-to-order system with multiple customer classes,, Management Science, 52 (2006), 1896.
doi: 10.1287/mnsc.1060.0588. |
[2] |
M. Barut and V. Sridharan, Revenue management in order-driven production systems,, Decision Science, 36 (2005), 287.
doi: 10.1111/j.1540-5414.2005.00074.x. |
[3] |
S. Carr and I. Duenyas, Optimal admission control and sequencing in a Make-To-Stock/Make-To-Order production system,, Operations Research, 48 (2000), 709.
doi: 10.1287/opre.48.5.709.12401. |
[4] |
K. Chang and Y. Lu, Tandem queues production systems with base stocks,, Proceedings of the 4th International Conference on Networked Computing and Advanced Information Management, (2008). Google Scholar |
[5] |
F. de Vericourt, F. Karaesmen and Y. Dallery, Optimal stock allocation for a capacitated supply system,, Management Science, 48 (2002), 1486.
doi: 10.1287/mnsc.48.11.1486.263. |
[6] |
M. Elhafsi, Optimal integrated production and inventory control of an assemble-to-order system with multiple non-unitary demand classes,, European Journal of Operational Research, 194 (2009), 127.
doi: 10.1016/j.ejor.2007.12.007. |
[7] |
A. Y. Ha, Inventory rationing in a make-to-stock production system with several demand classes and lost sales,, Management Science, 43 (): 1093.
doi: 10.1287/mnsc.43.8.1093. |
[8] |
A. Y. Ha, Stock rationing policy for a make-to-stock production system with two priority classes and backordering,, Naval Research Logistics, 44 (): 457.
doi: 10.1002/(SICI)1520-6750(199708)44:5<457::AID-NAV4>3.0.CO;2-3. |
[9] |
A. Y. Ha, Optimal dynamic scheduling policy for a make-to-stock production system,, Operations Research, 45 (): 42.
doi: 10.1287/opre.45.1.42. |
[10] |
F. H. Harris and J. P. Pinder, A revenue-management approach to demand management and order booking in assemble-to-order manufacturing,, Journal of Operations Management, 13 (1995), 299.
doi: 10.1016/0272-6963(95)00029-1. |
[11] |
S. Lippman, Applying a new device in the optimization of exponential queueing systems,, Operations Research, 23 (1975), 687.
doi: 10.1287/opre.23.4.687. |
[12] |
M. Modarres and M. Sharifyazdi, Revenue management approach to stochastic capacity allocation problem,, European Journal of Operational Research, 192 (2009), 442.
doi: 10.1016/j.ejor.2007.09.044. |
[13] |
E. Porteus, Conditions for characterizing the structure of optimal strategies in infinite-horizon dynamic programs,, Journal of Optimization Theory and Applications, 36 (1982), 419.
doi: 10.1007/BF00934355. |
[14] |
M. Puterman, "Markov Decision Processes,", John Wiley and Sons, (2005). Google Scholar |
[15] |
S. Stidham, Optimal control of admission to a queueing system,, IEEE Transactions on Automatic Control, 8 (1985), 705.
doi: 10.1109/TAC.1985.1104054. |
[16] |
R. Teunter and W. Haneveld, Dynamic inventory rationing strategies for inventory systems with two demand classes, Poisson demand and backordering,, European Journal of Operational Research, 190 (2008), 156.
doi: 10.1016/j.ejor.2007.06.009. |
[17] |
M. P. Van Oyen, Monotonicity of optimal performance measures for polling systems,, Probability in the Engineering and Informational Sciences, 11 (1997), 219.
doi: 10.1017/S0269964800004770. |
[18] |
M. H. Veatch and L. M. Wein, Optimal control of a two-station tandem production/inventory system,, Operations Research, 42 (1994), 337.
doi: 10.1287/opre.42.2.337. |
[19] |
J. Yang, X. Qi, Y. Xia and G. Yu, Inventory control with Markovian capacity and the option of order rejection,, European Journal of Operational Research, 174 (2006), 622.
doi: 10.1016/j.ejor.2004.12.016. |
show all references
References:
[1] |
S. Benjaafar and M. Elhafsi, Production and inventory control of a single product assemble-to-order system with multiple customer classes,, Management Science, 52 (2006), 1896.
doi: 10.1287/mnsc.1060.0588. |
[2] |
M. Barut and V. Sridharan, Revenue management in order-driven production systems,, Decision Science, 36 (2005), 287.
doi: 10.1111/j.1540-5414.2005.00074.x. |
[3] |
S. Carr and I. Duenyas, Optimal admission control and sequencing in a Make-To-Stock/Make-To-Order production system,, Operations Research, 48 (2000), 709.
doi: 10.1287/opre.48.5.709.12401. |
[4] |
K. Chang and Y. Lu, Tandem queues production systems with base stocks,, Proceedings of the 4th International Conference on Networked Computing and Advanced Information Management, (2008). Google Scholar |
[5] |
F. de Vericourt, F. Karaesmen and Y. Dallery, Optimal stock allocation for a capacitated supply system,, Management Science, 48 (2002), 1486.
doi: 10.1287/mnsc.48.11.1486.263. |
[6] |
M. Elhafsi, Optimal integrated production and inventory control of an assemble-to-order system with multiple non-unitary demand classes,, European Journal of Operational Research, 194 (2009), 127.
doi: 10.1016/j.ejor.2007.12.007. |
[7] |
A. Y. Ha, Inventory rationing in a make-to-stock production system with several demand classes and lost sales,, Management Science, 43 (): 1093.
doi: 10.1287/mnsc.43.8.1093. |
[8] |
A. Y. Ha, Stock rationing policy for a make-to-stock production system with two priority classes and backordering,, Naval Research Logistics, 44 (): 457.
doi: 10.1002/(SICI)1520-6750(199708)44:5<457::AID-NAV4>3.0.CO;2-3. |
[9] |
A. Y. Ha, Optimal dynamic scheduling policy for a make-to-stock production system,, Operations Research, 45 (): 42.
doi: 10.1287/opre.45.1.42. |
[10] |
F. H. Harris and J. P. Pinder, A revenue-management approach to demand management and order booking in assemble-to-order manufacturing,, Journal of Operations Management, 13 (1995), 299.
doi: 10.1016/0272-6963(95)00029-1. |
[11] |
S. Lippman, Applying a new device in the optimization of exponential queueing systems,, Operations Research, 23 (1975), 687.
doi: 10.1287/opre.23.4.687. |
[12] |
M. Modarres and M. Sharifyazdi, Revenue management approach to stochastic capacity allocation problem,, European Journal of Operational Research, 192 (2009), 442.
doi: 10.1016/j.ejor.2007.09.044. |
[13] |
E. Porteus, Conditions for characterizing the structure of optimal strategies in infinite-horizon dynamic programs,, Journal of Optimization Theory and Applications, 36 (1982), 419.
doi: 10.1007/BF00934355. |
[14] |
M. Puterman, "Markov Decision Processes,", John Wiley and Sons, (2005). Google Scholar |
[15] |
S. Stidham, Optimal control of admission to a queueing system,, IEEE Transactions on Automatic Control, 8 (1985), 705.
doi: 10.1109/TAC.1985.1104054. |
[16] |
R. Teunter and W. Haneveld, Dynamic inventory rationing strategies for inventory systems with two demand classes, Poisson demand and backordering,, European Journal of Operational Research, 190 (2008), 156.
doi: 10.1016/j.ejor.2007.06.009. |
[17] |
M. P. Van Oyen, Monotonicity of optimal performance measures for polling systems,, Probability in the Engineering and Informational Sciences, 11 (1997), 219.
doi: 10.1017/S0269964800004770. |
[18] |
M. H. Veatch and L. M. Wein, Optimal control of a two-station tandem production/inventory system,, Operations Research, 42 (1994), 337.
doi: 10.1287/opre.42.2.337. |
[19] |
J. Yang, X. Qi, Y. Xia and G. Yu, Inventory control with Markovian capacity and the option of order rejection,, European Journal of Operational Research, 174 (2006), 622.
doi: 10.1016/j.ejor.2004.12.016. |
[1] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[2] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[3] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[4] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[5] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[6] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[7] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[8] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[9] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[10] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[11] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[12] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[13] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[14] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[15] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[16] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[17] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[18] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[19] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[20] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]