Citation: |
[1] |
R. S. Burachik and A. Rubinov, Abstract convexity and augmented Lagrangians, SIAM J. Optim., 18 (2007), 413-436.doi: 10.1137/050647621. |
[2] |
G. Y. Chen, X. X. Huang and X. Q. Yang, "Vector Optimization: Set-Valued and Variational Analysis," Springer, Berlin, 2005. |
[3] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," John Wiley and Sons, New York, 1983. |
[4] |
X. X. Huang and X. Q. Yang, A unified augmented Lagrangian approach to duality and exact penalization, Math. Oper. Res., 28 (2003), 533-552.doi: 10.1287/moor.28.3.533.16395. |
[5] |
X. X. Huang and X. Q. Yang, Nonlinear Lagrangian for multiobjective optimization and applications to duality and exact penalization, SIAM J. Optim., 13 (2002), 675-692.doi: 10.1137/S1052623401384850. |
[6] |
X. X. Huang and X. Q. Yang, Duality for multiobjective optimization via nonlinear Lagrangian functions, J. Optim. Theory Appl., 120 (2004), 111-127.doi: 10.1023/B:JOTA.0000012735.86699.a1. |
[7] |
X. X. Huang and X. Q. Yang, Duality and exact penalization for vector optimization via augmented Lagrangian, J. Optim. Theory Appl., 111 (2001), 615-640.doi: 10.1023/A:1012654128753. |
[8] |
X. X. Huang, X. Q. Yang and K. L. Teo, Convergence analysis of a class of penalty methods for vector optimization problems with cone constraints, J. Global Optim., 36 (2006), 637-652.doi: 10.1007/s10898-004-1937-y. |
[9] |
J. Jahn, "Vector Optimization-Theory, Applications and Extensions," Springer, Berlin, 2004. |
[10] |
P. Q. Khanh, T. H. Nuong and M. Thera, On duality in nonconvex vector optimization in Banach spaces using augmented Lagrangians, Positivity, 3 (1999), 49-64.doi: 10.1023/A:1009753224825. |
[11] |
A. Nedić and A. Ozdaglar, Separation of nonconvex sets with general augmenting functions, Math. Oper. Res., 33 (2008), 587-605.doi: 10.1287/moor.1070.0296. |
[12] |
A. Nedić and A. Ozdaglar, A geometric framework for nonconvex optimization duality using augmented Lagrangian functions, J. Global Optim., 40 (2008), 545-573.doi: 10.1007/s10898-006-9122-0. |
[13] |
R. T. Rockafellar and R. J.-B. Wets, "Variational Analysis," Springer-Verlag, Berlin, 1998.doi: 10.1007/978-3-642-02431-3. |
[14] |
A. M. Rubinov, X. X. Huang and X. Q. Yang, The zero duality gap property and lower semicontinuity of the perturbation function, Math. Oper. Res., 27 (2002), 775-791.doi: 10.1287/moor.27.4.775.295. |
[15] |
A. M. Rubinov and X. Q. Yang, "Lagrange-Type Functions in Constrained Non-Convex Optimization," Kluwer Academic Publishers, Dordrecht, 2003. |
[16] |
C. Singh, D. Bhatia and N. Rueda, Duality in nonlinear multiobjective programming using augmented Lagrangian functions, J. Optim. Theory Appl., 88 (1996), 659-670.doi: 10.1007/BF02192203. |
[17] |
C. Y. Wang, X. Q. Yang and X. M. Yang, Zero duality gap and convergence of sub-optimal paths for optimization problems via a nonlinear augmented Lagrangian, (2009) (preprint). |
[18] |
C. Y. Wang, X. Q. Yang and X. M. Yang, Unified nonlinear Lagrangian approach to duality and optimal paths, J. Optim. Theory Appl., 135 (2007), 85-100.doi: 10.1007/s10957-007-9225-x. |
[19] |
X. Q. Yang and X. X. Huang, A nonlinear Lagrangian approach to constrained optimization problems, SIAM J. Optim., 11 (2001), 1119-1144.doi: 10.1137/S1052623400371806. |
[20] |
Y. Y. Zhou and X. Q. Yang, Some results about duality and exact penalization, J. Global Optim., 29 (2004), 497-509.doi: 10.1023/B:JOGO.0000047916.73871.88. |
[21] |
Y. Y. Zhou and X. Q. Yang, Augmented Lagrangian function, non-quadratic growth condition and exact penalization, Oper. Res. Lett., 34 (2006), 127-134.doi: 10.1016/j.orl.2005.03.008. |
[22] |
Y. Y. Zhou and X. Q. Yang, Duality and penalization in optimization via an augmented Lagrangian function with applications, J. Optim. Theory Appl., 140 (2009), 171-188.doi: 10.1007/s10957-008-9455-6. |