January  2011, 7(1): 175-181. doi: 10.3934/jimo.2011.7.175

2-D analysis based iterative learning control for linear discrete-time systems with time delay

1. 

Department of Computer, Chongqing University, Chongqing 400044, China, China

2. 

Texas A&M University at Qatar, Doha, P.O.Box 5825

Received  December 2009 Revised  October 2010 Published  January 2011

This paper investigates an iterative learning controller for linear discrete-time systems with state delay based on two-dimensional (2-D) system theory. It shall be shown that a 2-D linear discrete Roessor's model can be applied to describe the ILC process of linear discrete time-delay systems. Much less restrictive conditions for the convergence of the proposed learning rules are derived. A learning algorithm is presented which provides much more effective learning of control input, which enables us to obtain a control input to drive the system output to the desired trajectory quickly. Numerical examples are included to illustrate the performance of the proposed control procedures.
Citation: Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175
References:
[1]

S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning,, J. Robot Syst., 1 (1984), 123.  doi: 10.1002/rob.4620010203.  Google Scholar

[2]

Y. Chen and Z. Gong, Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays,, Automatica, 34 (1998), 345.  doi: 10.1016/S0005-1098(97)00196-9.  Google Scholar

[3]

J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems,, IEE, 147 (2000), 217.  doi: 10.1049/ip-cta:20000138.  Google Scholar

[4]

T. W. S. Chow and Yong F, An iterative learning control method for continuous-time systems based on 2-D system theory,, IEEE Trans. Circuits Syst., 45 (1998), 683.   Google Scholar

[5]

X. Fang, P. Chen and J. Shao, Optimal higher-order iterative learning control of discrete-time linear systems,, IEE Pro.-Control Theory Appl., 152 (2005).   Google Scholar

[6]

Y. Fang and T. W. S. Chow, 2-D Analysis for iterative learning control for discrete-time systems with variable initial conditions,, IEEE Tran. Automat. Contr, 50 (2003).   Google Scholar

[7]

Y. Fang and T. W. S. Chow, Iterative learning control of linear discrete-time multivariable system,, Aoutmatica, 34 (1998), 1459.  doi: 10.1016/S0005-1098(98)00091-0.  Google Scholar

[8]

K. Galkowski and E. Rogers, Stablility and dynamic boundary condition decoupling analysis for a class of 2-D dicrete linear systems,, IEE Proc.-Circuits Devices Syst., 148 (2001).   Google Scholar

[9]

Z. Geng, R. Carroll and J. Xies, Two-dimensional model and algorithm analysis for a class of iterative learning control system,, Int. J. Contr., 52 (1990), 833.  doi: 10.1080/00207179008953571.  Google Scholar

[10]

Z. Geng and M. Jamshidi, Learning control system analysis and design based on 2-D system theory,, J. Intell. Robot. Syst., (1990), 17.  doi: 10.1007/BF00368970.  Google Scholar

[11]

Feng-Hsiag. Hsiao and K. yeh, Robust D-stability analysis for discrete uncertain systems with multiple time delays,, IEEE Tencon, (1993), 451.   Google Scholar

[12]

D. H. Hwang, Z. Bien and S. R. Oh, Iterative learning control method for discrete-time dynamic systems,, Proc. Inst. Elect. Eng. D, 138 (1991), 139.   Google Scholar

[13]

T. Kaczorek, "Two-Dimensional Linear Systems,", New York: SpringerVerlag, (1985).   Google Scholar

[14]

J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2-D system theory,, IEEE Trans. Automat. Contr., 38 (1993), 121.  doi: 10.1109/9.186321.  Google Scholar

[15]

X. D. Li and T. W. S Chow, 2-D System theory based iterative learning control for linear continuous system with time delay,, IEEE Tran. Automat. Contr, 52 (2005).   Google Scholar

[16]

X. D. Li and T. W. S Chow, Iterative learning control for linear time-variant discrete systems based on 2-D system theory,, IEE Proc.-Control Theory Appl., 152 (2005).   Google Scholar

[17]

K. L. Moore, "Iterative Learning Control for Deterministic Systems,", New York: Springer-Verlag, (1993).   Google Scholar

[18]

K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay,, IEE Proceedings-Control Theory and Applications, 145 (1998), 507.  doi: 10.1049/ip-cta:19982409.  Google Scholar

[19]

W. Paszke and K. Galkowsiki, Stability and stabilisation of 2D discrete linear systems with multiple delays,, IEEE, (2003), 0.   Google Scholar

[20]

T. Sugie and T. Ono, An iterative learning control law for dynamic systems,, Automatica, 27 (1991).  doi: 10.1016/0005-1098(91)90066-B.  Google Scholar

[21]

J. M. Xu and M. X. Sun, LMI_based robust iterative learning controller design for discrete linear uncertain systems,, Journal of Control Theory and Application, 3 (2005), 259.  doi: 10.1007/s11768-005-0046-x.  Google Scholar

[22]

B. Zhang and G. Tang, PD-type iterative learning control for nonlinear time-delay system with external disturbance,, Journal of System Engineering and Electronic, 17 (2006), 600.  doi: 10.1016/S1004-4132(06)60103-5.  Google Scholar

show all references

References:
[1]

S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning,, J. Robot Syst., 1 (1984), 123.  doi: 10.1002/rob.4620010203.  Google Scholar

[2]

Y. Chen and Z. Gong, Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays,, Automatica, 34 (1998), 345.  doi: 10.1016/S0005-1098(97)00196-9.  Google Scholar

[3]

J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems,, IEE, 147 (2000), 217.  doi: 10.1049/ip-cta:20000138.  Google Scholar

[4]

T. W. S. Chow and Yong F, An iterative learning control method for continuous-time systems based on 2-D system theory,, IEEE Trans. Circuits Syst., 45 (1998), 683.   Google Scholar

[5]

X. Fang, P. Chen and J. Shao, Optimal higher-order iterative learning control of discrete-time linear systems,, IEE Pro.-Control Theory Appl., 152 (2005).   Google Scholar

[6]

Y. Fang and T. W. S. Chow, 2-D Analysis for iterative learning control for discrete-time systems with variable initial conditions,, IEEE Tran. Automat. Contr, 50 (2003).   Google Scholar

[7]

Y. Fang and T. W. S. Chow, Iterative learning control of linear discrete-time multivariable system,, Aoutmatica, 34 (1998), 1459.  doi: 10.1016/S0005-1098(98)00091-0.  Google Scholar

[8]

K. Galkowski and E. Rogers, Stablility and dynamic boundary condition decoupling analysis for a class of 2-D dicrete linear systems,, IEE Proc.-Circuits Devices Syst., 148 (2001).   Google Scholar

[9]

Z. Geng, R. Carroll and J. Xies, Two-dimensional model and algorithm analysis for a class of iterative learning control system,, Int. J. Contr., 52 (1990), 833.  doi: 10.1080/00207179008953571.  Google Scholar

[10]

Z. Geng and M. Jamshidi, Learning control system analysis and design based on 2-D system theory,, J. Intell. Robot. Syst., (1990), 17.  doi: 10.1007/BF00368970.  Google Scholar

[11]

Feng-Hsiag. Hsiao and K. yeh, Robust D-stability analysis for discrete uncertain systems with multiple time delays,, IEEE Tencon, (1993), 451.   Google Scholar

[12]

D. H. Hwang, Z. Bien and S. R. Oh, Iterative learning control method for discrete-time dynamic systems,, Proc. Inst. Elect. Eng. D, 138 (1991), 139.   Google Scholar

[13]

T. Kaczorek, "Two-Dimensional Linear Systems,", New York: SpringerVerlag, (1985).   Google Scholar

[14]

J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2-D system theory,, IEEE Trans. Automat. Contr., 38 (1993), 121.  doi: 10.1109/9.186321.  Google Scholar

[15]

X. D. Li and T. W. S Chow, 2-D System theory based iterative learning control for linear continuous system with time delay,, IEEE Tran. Automat. Contr, 52 (2005).   Google Scholar

[16]

X. D. Li and T. W. S Chow, Iterative learning control for linear time-variant discrete systems based on 2-D system theory,, IEE Proc.-Control Theory Appl., 152 (2005).   Google Scholar

[17]

K. L. Moore, "Iterative Learning Control for Deterministic Systems,", New York: Springer-Verlag, (1993).   Google Scholar

[18]

K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay,, IEE Proceedings-Control Theory and Applications, 145 (1998), 507.  doi: 10.1049/ip-cta:19982409.  Google Scholar

[19]

W. Paszke and K. Galkowsiki, Stability and stabilisation of 2D discrete linear systems with multiple delays,, IEEE, (2003), 0.   Google Scholar

[20]

T. Sugie and T. Ono, An iterative learning control law for dynamic systems,, Automatica, 27 (1991).  doi: 10.1016/0005-1098(91)90066-B.  Google Scholar

[21]

J. M. Xu and M. X. Sun, LMI_based robust iterative learning controller design for discrete linear uncertain systems,, Journal of Control Theory and Application, 3 (2005), 259.  doi: 10.1007/s11768-005-0046-x.  Google Scholar

[22]

B. Zhang and G. Tang, PD-type iterative learning control for nonlinear time-delay system with external disturbance,, Journal of System Engineering and Electronic, 17 (2006), 600.  doi: 10.1016/S1004-4132(06)60103-5.  Google Scholar

[1]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[2]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[3]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[4]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[5]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[6]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[7]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[8]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[9]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[12]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[13]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[14]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[15]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[16]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[17]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[18]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[19]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[20]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]