-
Previous Article
A differential equation method for solving box constrained variational inequality problems
- JIMO Home
- This Issue
-
Next Article
Nonlinear augmented Lagrangian for nonconvex multiobjective optimization
2-D analysis based iterative learning control for linear discrete-time systems with time delay
1. | Department of Computer, Chongqing University, Chongqing 400044, China, China |
2. | Texas A&M University at Qatar, Doha, P.O.Box 5825 |
References:
[1] |
S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning,, J. Robot Syst., 1 (1984), 123.
doi: 10.1002/rob.4620010203. |
[2] |
Y. Chen and Z. Gong, Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays,, Automatica, 34 (1998), 345.
doi: 10.1016/S0005-1098(97)00196-9. |
[3] |
J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems,, IEE, 147 (2000), 217.
doi: 10.1049/ip-cta:20000138. |
[4] |
T. W. S. Chow and Yong F, An iterative learning control method for continuous-time systems based on 2-D system theory,, IEEE Trans. Circuits Syst., 45 (1998), 683. Google Scholar |
[5] |
X. Fang, P. Chen and J. Shao, Optimal higher-order iterative learning control of discrete-time linear systems,, IEE Pro.-Control Theory Appl., 152 (2005). Google Scholar |
[6] |
Y. Fang and T. W. S. Chow, 2-D Analysis for iterative learning control for discrete-time systems with variable initial conditions,, IEEE Tran. Automat. Contr, 50 (2003). Google Scholar |
[7] |
Y. Fang and T. W. S. Chow, Iterative learning control of linear discrete-time multivariable system,, Aoutmatica, 34 (1998), 1459.
doi: 10.1016/S0005-1098(98)00091-0. |
[8] |
K. Galkowski and E. Rogers, Stablility and dynamic boundary condition decoupling analysis for a class of 2-D dicrete linear systems,, IEE Proc.-Circuits Devices Syst., 148 (2001). Google Scholar |
[9] |
Z. Geng, R. Carroll and J. Xies, Two-dimensional model and algorithm analysis for a class of iterative learning control system,, Int. J. Contr., 52 (1990), 833.
doi: 10.1080/00207179008953571. |
[10] |
Z. Geng and M. Jamshidi, Learning control system analysis and design based on 2-D system theory,, J. Intell. Robot. Syst., (1990), 17.
doi: 10.1007/BF00368970. |
[11] |
Feng-Hsiag. Hsiao and K. yeh, Robust D-stability analysis for discrete uncertain systems with multiple time delays,, IEEE Tencon, (1993), 451. Google Scholar |
[12] |
D. H. Hwang, Z. Bien and S. R. Oh, Iterative learning control method for discrete-time dynamic systems,, Proc. Inst. Elect. Eng. D, 138 (1991), 139. Google Scholar |
[13] |
T. Kaczorek, "Two-Dimensional Linear Systems,", New York: SpringerVerlag, (1985). Google Scholar |
[14] |
J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2-D system theory,, IEEE Trans. Automat. Contr., 38 (1993), 121.
doi: 10.1109/9.186321. |
[15] |
X. D. Li and T. W. S Chow, 2-D System theory based iterative learning control for linear continuous system with time delay,, IEEE Tran. Automat. Contr, 52 (2005). Google Scholar |
[16] |
X. D. Li and T. W. S Chow, Iterative learning control for linear time-variant discrete systems based on 2-D system theory,, IEE Proc.-Control Theory Appl., 152 (2005). Google Scholar |
[17] |
K. L. Moore, "Iterative Learning Control for Deterministic Systems,", New York: Springer-Verlag, (1993). Google Scholar |
[18] |
K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay,, IEE Proceedings-Control Theory and Applications, 145 (1998), 507.
doi: 10.1049/ip-cta:19982409. |
[19] |
W. Paszke and K. Galkowsiki, Stability and stabilisation of 2D discrete linear systems with multiple delays,, IEEE, (2003), 0. Google Scholar |
[20] |
T. Sugie and T. Ono, An iterative learning control law for dynamic systems,, Automatica, 27 (1991).
doi: 10.1016/0005-1098(91)90066-B. |
[21] |
J. M. Xu and M. X. Sun, LMI_based robust iterative learning controller design for discrete linear uncertain systems,, Journal of Control Theory and Application, 3 (2005), 259.
doi: 10.1007/s11768-005-0046-x. |
[22] |
B. Zhang and G. Tang, PD-type iterative learning control for nonlinear time-delay system with external disturbance,, Journal of System Engineering and Electronic, 17 (2006), 600.
doi: 10.1016/S1004-4132(06)60103-5. |
show all references
References:
[1] |
S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning,, J. Robot Syst., 1 (1984), 123.
doi: 10.1002/rob.4620010203. |
[2] |
Y. Chen and Z. Gong, Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays,, Automatica, 34 (1998), 345.
doi: 10.1016/S0005-1098(97)00196-9. |
[3] |
J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems,, IEE, 147 (2000), 217.
doi: 10.1049/ip-cta:20000138. |
[4] |
T. W. S. Chow and Yong F, An iterative learning control method for continuous-time systems based on 2-D system theory,, IEEE Trans. Circuits Syst., 45 (1998), 683. Google Scholar |
[5] |
X. Fang, P. Chen and J. Shao, Optimal higher-order iterative learning control of discrete-time linear systems,, IEE Pro.-Control Theory Appl., 152 (2005). Google Scholar |
[6] |
Y. Fang and T. W. S. Chow, 2-D Analysis for iterative learning control for discrete-time systems with variable initial conditions,, IEEE Tran. Automat. Contr, 50 (2003). Google Scholar |
[7] |
Y. Fang and T. W. S. Chow, Iterative learning control of linear discrete-time multivariable system,, Aoutmatica, 34 (1998), 1459.
doi: 10.1016/S0005-1098(98)00091-0. |
[8] |
K. Galkowski and E. Rogers, Stablility and dynamic boundary condition decoupling analysis for a class of 2-D dicrete linear systems,, IEE Proc.-Circuits Devices Syst., 148 (2001). Google Scholar |
[9] |
Z. Geng, R. Carroll and J. Xies, Two-dimensional model and algorithm analysis for a class of iterative learning control system,, Int. J. Contr., 52 (1990), 833.
doi: 10.1080/00207179008953571. |
[10] |
Z. Geng and M. Jamshidi, Learning control system analysis and design based on 2-D system theory,, J. Intell. Robot. Syst., (1990), 17.
doi: 10.1007/BF00368970. |
[11] |
Feng-Hsiag. Hsiao and K. yeh, Robust D-stability analysis for discrete uncertain systems with multiple time delays,, IEEE Tencon, (1993), 451. Google Scholar |
[12] |
D. H. Hwang, Z. Bien and S. R. Oh, Iterative learning control method for discrete-time dynamic systems,, Proc. Inst. Elect. Eng. D, 138 (1991), 139. Google Scholar |
[13] |
T. Kaczorek, "Two-Dimensional Linear Systems,", New York: SpringerVerlag, (1985). Google Scholar |
[14] |
J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2-D system theory,, IEEE Trans. Automat. Contr., 38 (1993), 121.
doi: 10.1109/9.186321. |
[15] |
X. D. Li and T. W. S Chow, 2-D System theory based iterative learning control for linear continuous system with time delay,, IEEE Tran. Automat. Contr, 52 (2005). Google Scholar |
[16] |
X. D. Li and T. W. S Chow, Iterative learning control for linear time-variant discrete systems based on 2-D system theory,, IEE Proc.-Control Theory Appl., 152 (2005). Google Scholar |
[17] |
K. L. Moore, "Iterative Learning Control for Deterministic Systems,", New York: Springer-Verlag, (1993). Google Scholar |
[18] |
K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay,, IEE Proceedings-Control Theory and Applications, 145 (1998), 507.
doi: 10.1049/ip-cta:19982409. |
[19] |
W. Paszke and K. Galkowsiki, Stability and stabilisation of 2D discrete linear systems with multiple delays,, IEEE, (2003), 0. Google Scholar |
[20] |
T. Sugie and T. Ono, An iterative learning control law for dynamic systems,, Automatica, 27 (1991).
doi: 10.1016/0005-1098(91)90066-B. |
[21] |
J. M. Xu and M. X. Sun, LMI_based robust iterative learning controller design for discrete linear uncertain systems,, Journal of Control Theory and Application, 3 (2005), 259.
doi: 10.1007/s11768-005-0046-x. |
[22] |
B. Zhang and G. Tang, PD-type iterative learning control for nonlinear time-delay system with external disturbance,, Journal of System Engineering and Electronic, 17 (2006), 600.
doi: 10.1016/S1004-4132(06)60103-5. |
[1] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[2] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[3] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[4] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[5] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[6] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[7] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[8] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[9] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[10] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[11] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[12] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[13] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[14] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[15] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[16] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[17] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[18] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[19] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[20] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]