-
Previous Article
A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the Make-To-Stock and Make-To-Order management architecture
- JIMO Home
- This Issue
-
Next Article
On the admission control and demand management in a two-station tandem production system
A queueing analysis of multi-purpose production facility's operations
1. | Saint Mary's University, Sobey School of Business, Department of Finance, Information Systems, and Management Science, Halifax, Nova Scotia, B3H 3C3, Canada |
2. | Western Washington University, College of Business and Economics, Department of Decision Sciences, Bellingham, WA 98225, United States |
3. | École de Technologie Supérieure, Département de Génie Électrique, Montréal, Québec, H3C 1K3, Canada |
References:
[1] |
L. Abolnikov and A. Dukhovny, Markov chains with transition delta-matrix: ergodicity conditions, invariant probability measures and applications,, Journal of Applied Mathematics and Stochastic Analysis, 4 (1991), 335.
doi: 10.1155/S1048953391000254. |
[2] |
J. R. Artalejo and G. Choudhury, Steady state analysis of an M/G/1 queue with repeated attempts and two phase service,, Quality Technology and Quantitative Management, 1 (2004), 189.
|
[3] |
D. Bertsimas and X. Papaconstantinou, On the steady-state solution of the M/C$_2(a,b)$/$S$ queueing system,, Transportation Sciences, 22 (1988), 125.
doi: 10.1287/trsc.22.2.125. |
[4] |
D. Bertsimas and X. Papaconstantinou, Analysis of the stationary $E_k$/$C_2$/S queueing system,, European Journal of Operational Research, 37 (1988), 272.
doi: 10.1016/0377-2217(88)90336-0. |
[5] |
G. Choudhury, Some aspects of an M/G/1 queueing system with optional second service,, TOP, 11 (2003), 141.
doi: 10.1007/BF02578955. |
[6] |
G. Choudhury and K. C. Madan, A two-phase batch arrival queueing system with a vacation time under Bernoulli schedule,, Applied Mathematics and Computation, 149 (2004), 337.
doi: 10.1016/S0096-3003(03)00138-3. |
[7] |
G. Choudhury and K. C. Madan, A two-stage arrival queueing system with a modified Bernoulli schedule vacation under N-policy,, Mathematical and Computer Modelling, 42 (2005), 71.
doi: 10.1016/j.mcm.2005.04.003. |
[8] |
G. Choudhury and M. Paul, A batch arrival queue with an additional service channel under N-policy,, Applied Mathematics and Computation, 156 (2004), 115.
doi: 10.1016/j.amc.2003.07.006. |
[9] |
G. Choudhury and M. Paul, Analysis of a two phases batch arrival queueing model with Bernoulli vacation schedule,, Revista Investigatión Operacional, 25 (2004), 217. Google Scholar |
[10] |
B. T. Doshi, Queueing systems with vacations: A survey,, Queueing Systems, 1 (1986), 29.
doi: 10.1007/BF01149327. |
[11] |
B. T. Doshi, Single-server queues with vacations,, in, (1990), 217.
|
[12] |
B. T. Doshi, Analysis of a two-phase queueing system with general service times,, Operations Research Letters, 10 (1991), 265.
doi: 10.1016/0167-6377(91)90012-E. |
[13] |
A. Federgruen and K. C. So, Optimality of threshold policies in single server queueing system with vacations,, Advances in Applied Probability, 23 (1991), 388.
doi: 10.2307/1427755. |
[14] |
O. Kella, The threshold policy in the M/G/1 queue with server vacations,, Naval Research Logistics, 36 (1989), 111.
doi: 10.1002/1520-6750(198902)36:1<111::AID-NAV3220360109>3.0.CO;2-3. |
[15] |
T. S. Kim and K. C. Chae, Two-phase queueing system with generalized vacation,, Journal of the Korean Institute of Industrial Engineers, 22 (1996), 95. Google Scholar |
[16] |
T. S. Kim and A. Q. Park, Cycle analysis of a two-phase queueing model with threshold,, European Journal of Operational Research, 144 (2003), 157.
|
[17] |
C. M. Krishna and Y. H. Lee, A study of two-phase service,, Operations Research Letters, 9 (1990), 91.
doi: 10.1016/0167-6377(90)90047-9. |
[18] |
H. W. Lee, S. S. Lee, J. O. Park and K. C. Chae, Analysis of M$^x$/G/1 queue with N policy and multiple vacations,, Journal of Applied Probability, 31 (1994), 467.
doi: 10.2307/3215040. |
[19] |
K. C. Madan, A cyclic queueing system with three servers and optional two-way feedback,, Microelectron. Rel., 28 (1988), 873.
doi: 10.1016/0026-2714(88)90285-5. |
[20] |
K. C. Madan, An M/G/1 queue with second optional service,, Queueing Systems, 34 (2000), 37.
doi: 10.1023/A:1019144716929. |
[21] |
K. C. Madan, On a single server queue with two stage general heterogeneous service and binomial schedule server vacations,, The Egyptian Statistical Journal, 44 (2000), 39.
|
[22] |
K. C. Madan, On a single server queue with two stage general heterogeneous service and deterministic schedule server vacations,, International Journal of System Science, 32 (2001), 837.
doi: 10.1080/00207720121488. |
[23] |
K. C. Madan and M. Al-Rawwash, On the M$^x$/G/1 queue with feedback and optional server vacations based on a single vacation policy,, Applied Mathematics and Computation, 160 (2005), 909.
|
[24] |
K. C. Madan and A. Z. Abu Al-Rub, On a single server queue with optional phase type server vacations based on exhaustive deterministic service and a single vacation policy,, Applied Mathematics and Computation, 149 (2004), 723.
doi: 10.1016/S0096-3003(03)00174-7. |
[25] |
K. C. Madan, A. D. Al-Nasser and A. Q. Al-Masri, On M$^x$/(G1,G2)/1 queue with optional re-service,, Applied Mathematics and Computation, 152 (2004), 71.
doi: 10.1016/S0096-3003(03)00545-9. |
[26] |
J. Medhi, A single server Poisson input queue with a second optional channel,, Queueing Systems, 42 (2002), 239.
doi: 10.1023/A:1020519830116. |
[27] |
D. D. Selvam and V. Sivasankaran, A two-phase queueing system with server vacations,, Operations Research Letters, 15 (1994), 163.
doi: 10.1016/0167-6377(94)90052-3. |
[28] |
L. Tadj and G. Choudhury, Optimal design and control of queues,, TOP, 13 (2005), 359.
doi: 10.1007/BF02579061. |
[29] |
L. Tadj and J-.C. Ke, Control policy of a hysteretic queueing system,, Mathematical Methods of Operations Research, 57 (2003), 367.
|
[30] |
L. Tadj and J-.C. Ke, Control policy of a hysteretic bulk queueing system,, Mathematical and Computer Modelling, 5 (2004), 571.
|
[31] |
H. Takagi, "Queueing Analysis - A Foundation of Performance Evaluation,", Vol. 1, (1991).
|
[32] |
N. Tian and Z. G. Zhang, "Vacation Queueing Models - Theory and Applications,", Springer-Verlag, (2006).
|
[33] |
Z. G. Zhang, R. G. Vickson and M. J. A. van Eenige, Optimal two threshold policies in an M/G/1 queue with two vacation types,, Performance Evaluation, 29 (1997), 63.
doi: 10.1016/S0166-5316(96)00005-3. |
[34] |
J. Wang, An M/G/1 queue with second optional service and server breakdowns,, Computers and Mathematics with Applications, 47 (2004), 1713.
doi: 10.1016/j.camwa.2004.06.024. |
show all references
References:
[1] |
L. Abolnikov and A. Dukhovny, Markov chains with transition delta-matrix: ergodicity conditions, invariant probability measures and applications,, Journal of Applied Mathematics and Stochastic Analysis, 4 (1991), 335.
doi: 10.1155/S1048953391000254. |
[2] |
J. R. Artalejo and G. Choudhury, Steady state analysis of an M/G/1 queue with repeated attempts and two phase service,, Quality Technology and Quantitative Management, 1 (2004), 189.
|
[3] |
D. Bertsimas and X. Papaconstantinou, On the steady-state solution of the M/C$_2(a,b)$/$S$ queueing system,, Transportation Sciences, 22 (1988), 125.
doi: 10.1287/trsc.22.2.125. |
[4] |
D. Bertsimas and X. Papaconstantinou, Analysis of the stationary $E_k$/$C_2$/S queueing system,, European Journal of Operational Research, 37 (1988), 272.
doi: 10.1016/0377-2217(88)90336-0. |
[5] |
G. Choudhury, Some aspects of an M/G/1 queueing system with optional second service,, TOP, 11 (2003), 141.
doi: 10.1007/BF02578955. |
[6] |
G. Choudhury and K. C. Madan, A two-phase batch arrival queueing system with a vacation time under Bernoulli schedule,, Applied Mathematics and Computation, 149 (2004), 337.
doi: 10.1016/S0096-3003(03)00138-3. |
[7] |
G. Choudhury and K. C. Madan, A two-stage arrival queueing system with a modified Bernoulli schedule vacation under N-policy,, Mathematical and Computer Modelling, 42 (2005), 71.
doi: 10.1016/j.mcm.2005.04.003. |
[8] |
G. Choudhury and M. Paul, A batch arrival queue with an additional service channel under N-policy,, Applied Mathematics and Computation, 156 (2004), 115.
doi: 10.1016/j.amc.2003.07.006. |
[9] |
G. Choudhury and M. Paul, Analysis of a two phases batch arrival queueing model with Bernoulli vacation schedule,, Revista Investigatión Operacional, 25 (2004), 217. Google Scholar |
[10] |
B. T. Doshi, Queueing systems with vacations: A survey,, Queueing Systems, 1 (1986), 29.
doi: 10.1007/BF01149327. |
[11] |
B. T. Doshi, Single-server queues with vacations,, in, (1990), 217.
|
[12] |
B. T. Doshi, Analysis of a two-phase queueing system with general service times,, Operations Research Letters, 10 (1991), 265.
doi: 10.1016/0167-6377(91)90012-E. |
[13] |
A. Federgruen and K. C. So, Optimality of threshold policies in single server queueing system with vacations,, Advances in Applied Probability, 23 (1991), 388.
doi: 10.2307/1427755. |
[14] |
O. Kella, The threshold policy in the M/G/1 queue with server vacations,, Naval Research Logistics, 36 (1989), 111.
doi: 10.1002/1520-6750(198902)36:1<111::AID-NAV3220360109>3.0.CO;2-3. |
[15] |
T. S. Kim and K. C. Chae, Two-phase queueing system with generalized vacation,, Journal of the Korean Institute of Industrial Engineers, 22 (1996), 95. Google Scholar |
[16] |
T. S. Kim and A. Q. Park, Cycle analysis of a two-phase queueing model with threshold,, European Journal of Operational Research, 144 (2003), 157.
|
[17] |
C. M. Krishna and Y. H. Lee, A study of two-phase service,, Operations Research Letters, 9 (1990), 91.
doi: 10.1016/0167-6377(90)90047-9. |
[18] |
H. W. Lee, S. S. Lee, J. O. Park and K. C. Chae, Analysis of M$^x$/G/1 queue with N policy and multiple vacations,, Journal of Applied Probability, 31 (1994), 467.
doi: 10.2307/3215040. |
[19] |
K. C. Madan, A cyclic queueing system with three servers and optional two-way feedback,, Microelectron. Rel., 28 (1988), 873.
doi: 10.1016/0026-2714(88)90285-5. |
[20] |
K. C. Madan, An M/G/1 queue with second optional service,, Queueing Systems, 34 (2000), 37.
doi: 10.1023/A:1019144716929. |
[21] |
K. C. Madan, On a single server queue with two stage general heterogeneous service and binomial schedule server vacations,, The Egyptian Statistical Journal, 44 (2000), 39.
|
[22] |
K. C. Madan, On a single server queue with two stage general heterogeneous service and deterministic schedule server vacations,, International Journal of System Science, 32 (2001), 837.
doi: 10.1080/00207720121488. |
[23] |
K. C. Madan and M. Al-Rawwash, On the M$^x$/G/1 queue with feedback and optional server vacations based on a single vacation policy,, Applied Mathematics and Computation, 160 (2005), 909.
|
[24] |
K. C. Madan and A. Z. Abu Al-Rub, On a single server queue with optional phase type server vacations based on exhaustive deterministic service and a single vacation policy,, Applied Mathematics and Computation, 149 (2004), 723.
doi: 10.1016/S0096-3003(03)00174-7. |
[25] |
K. C. Madan, A. D. Al-Nasser and A. Q. Al-Masri, On M$^x$/(G1,G2)/1 queue with optional re-service,, Applied Mathematics and Computation, 152 (2004), 71.
doi: 10.1016/S0096-3003(03)00545-9. |
[26] |
J. Medhi, A single server Poisson input queue with a second optional channel,, Queueing Systems, 42 (2002), 239.
doi: 10.1023/A:1020519830116. |
[27] |
D. D. Selvam and V. Sivasankaran, A two-phase queueing system with server vacations,, Operations Research Letters, 15 (1994), 163.
doi: 10.1016/0167-6377(94)90052-3. |
[28] |
L. Tadj and G. Choudhury, Optimal design and control of queues,, TOP, 13 (2005), 359.
doi: 10.1007/BF02579061. |
[29] |
L. Tadj and J-.C. Ke, Control policy of a hysteretic queueing system,, Mathematical Methods of Operations Research, 57 (2003), 367.
|
[30] |
L. Tadj and J-.C. Ke, Control policy of a hysteretic bulk queueing system,, Mathematical and Computer Modelling, 5 (2004), 571.
|
[31] |
H. Takagi, "Queueing Analysis - A Foundation of Performance Evaluation,", Vol. 1, (1991).
|
[32] |
N. Tian and Z. G. Zhang, "Vacation Queueing Models - Theory and Applications,", Springer-Verlag, (2006).
|
[33] |
Z. G. Zhang, R. G. Vickson and M. J. A. van Eenige, Optimal two threshold policies in an M/G/1 queue with two vacation types,, Performance Evaluation, 29 (1997), 63.
doi: 10.1016/S0166-5316(96)00005-3. |
[34] |
J. Wang, An M/G/1 queue with second optional service and server breakdowns,, Computers and Mathematics with Applications, 47 (2004), 1713.
doi: 10.1016/j.camwa.2004.06.024. |
[1] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[2] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[3] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[4] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[5] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[6] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[7] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[8] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[9] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[10] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[11] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[12] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[13] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]