Citation: |
[1] |
L. Abolnikov and A. Dukhovny, Markov chains with transition delta-matrix: ergodicity conditions, invariant probability measures and applications, Journal of Applied Mathematics and Stochastic Analysis, 4 (1991), 335-355.doi: 10.1155/S1048953391000254. |
[2] |
J. R. Artalejo and G. Choudhury, Steady state analysis of an M/G/1 queue with repeated attempts and two phase service, Quality Technology and Quantitative Management, 1 (2004), 189-199. |
[3] |
D. Bertsimas and X. Papaconstantinou, On the steady-state solution of the M/C$_2(a,b)$/$S$ queueing system, Transportation Sciences, 22 (1988), 125-138.doi: 10.1287/trsc.22.2.125. |
[4] |
D. Bertsimas and X. Papaconstantinou, Analysis of the stationary $E_k$/$C_2$/S queueing system, European Journal of Operational Research, 37 (1988), 272-282.doi: 10.1016/0377-2217(88)90336-0. |
[5] |
G. Choudhury, Some aspects of an M/G/1 queueing system with optional second service, TOP, 11 (2003), 141-150.doi: 10.1007/BF02578955. |
[6] |
G. Choudhury and K. C. Madan, A two-phase batch arrival queueing system with a vacation time under Bernoulli schedule, Applied Mathematics and Computation, 149 (2004), 337-349.doi: 10.1016/S0096-3003(03)00138-3. |
[7] |
G. Choudhury and K. C. Madan, A two-stage arrival queueing system with a modified Bernoulli schedule vacation under N-policy, Mathematical and Computer Modelling, 42 (2005), 71-85.doi: 10.1016/j.mcm.2005.04.003. |
[8] |
G. Choudhury and M. Paul, A batch arrival queue with an additional service channel under N-policy, Applied Mathematics and Computation, 156 (2004), 115-130.doi: 10.1016/j.amc.2003.07.006. |
[9] |
G. Choudhury and M. Paul, Analysis of a two phases batch arrival queueing model with Bernoulli vacation schedule, Revista Investigatión Operacional, 25 (2004), 217-228. |
[10] |
B. T. Doshi, Queueing systems with vacations: A survey, Queueing Systems, 1 (1986), 29-66.doi: 10.1007/BF01149327. |
[11] |
B. T. Doshi, Single-server queues with vacations, in "Stochastic Analysis of Computer and Communication Systems" (eds. H. Takagi), Noth-Holland, Amsterdam, (1990), 217-265. |
[12] |
B. T. Doshi, Analysis of a two-phase queueing system with general service times, Operations Research Letters, 10 (1991), 265-272.doi: 10.1016/0167-6377(91)90012-E. |
[13] |
A. Federgruen and K. C. So, Optimality of threshold policies in single server queueing system with vacations, Advances in Applied Probability, 23 (1991), 388-405.doi: 10.2307/1427755. |
[14] |
O. Kella, The threshold policy in the M/G/1 queue with server vacations, Naval Research Logistics, 36 (1989), 111-123.doi: 10.1002/1520-6750(198902)36:1<111::AID-NAV3220360109>3.0.CO;2-3. |
[15] |
T. S. Kim and K. C. Chae, Two-phase queueing system with generalized vacation, Journal of the Korean Institute of Industrial Engineers, 22 (1996), 95-104. |
[16] |
T. S. Kim and A. Q. Park, Cycle analysis of a two-phase queueing model with threshold, European Journal of Operational Research, 144 (2003), 157-165. |
[17] |
C. M. Krishna and Y. H. Lee, A study of two-phase service, Operations Research Letters, 9 (1990), 91-97.doi: 10.1016/0167-6377(90)90047-9. |
[18] |
H. W. Lee, S. S. Lee, J. O. Park and K. C. Chae, Analysis of M$^x$/G/1 queue with N policy and multiple vacations, Journal of Applied Probability, 31 (1994), 467-496.doi: 10.2307/3215040. |
[19] |
K. C. Madan, A cyclic queueing system with three servers and optional two-way feedback, Microelectron. Rel., 28 (1988), 873-875.doi: 10.1016/0026-2714(88)90285-5. |
[20] |
K. C. Madan, An M/G/1 queue with second optional service, Queueing Systems, 34 (2000), 37-46.doi: 10.1023/A:1019144716929. |
[21] |
K. C. Madan, On a single server queue with two stage general heterogeneous service and binomial schedule server vacations, The Egyptian Statistical Journal, 44 (2000), 39-55. |
[22] |
K. C. Madan, On a single server queue with two stage general heterogeneous service and deterministic schedule server vacations, International Journal of System Science, 32 (2001), 837-844.doi: 10.1080/00207720121488. |
[23] |
K. C. Madan and M. Al-Rawwash, On the M$^x$/G/1 queue with feedback and optional server vacations based on a single vacation policy, Applied Mathematics and Computation, 160 (2005), 909-919. |
[24] |
K. C. Madan and A. Z. Abu Al-Rub, On a single server queue with optional phase type server vacations based on exhaustive deterministic service and a single vacation policy, Applied Mathematics and Computation, 149 (2004), 723-734.doi: 10.1016/S0096-3003(03)00174-7. |
[25] |
K. C. Madan, A. D. Al-Nasser and A. Q. Al-Masri, On M$^x$/(G1,G2)/1 queue with optional re-service, Applied Mathematics and Computation, 152 (2004), 71-88.doi: 10.1016/S0096-3003(03)00545-9. |
[26] |
J. Medhi, A single server Poisson input queue with a second optional channel, Queueing Systems, 42 (2002), 239-242.doi: 10.1023/A:1020519830116. |
[27] |
D. D. Selvam and V. Sivasankaran, A two-phase queueing system with server vacations, Operations Research Letters, 15 (1994), 163-168.doi: 10.1016/0167-6377(94)90052-3. |
[28] |
L. Tadj and G. Choudhury, Optimal design and control of queues, TOP, 13 (2005), 359-414.doi: 10.1007/BF02579061. |
[29] |
L. Tadj and J-.C. Ke, Control policy of a hysteretic queueing system, Mathematical Methods of Operations Research, 57 (2003), 367-376. |
[30] |
L. Tadj and J-.C. Ke, Control policy of a hysteretic bulk queueing system, Mathematical and Computer Modelling, 5 (2004), 571-579. |
[31] |
H. Takagi, "Queueing Analysis - A Foundation of Performance Evaluation," Vol. 1, Elsevier, Amsterdam, 1991. |
[32] |
N. Tian and Z. G. Zhang, "Vacation Queueing Models - Theory and Applications," Springer-Verlag, New York, 2006. |
[33] |
Z. G. Zhang, R. G. Vickson and M. J. A. van Eenige, Optimal two threshold policies in an M/G/1 queue with two vacation types, Performance Evaluation, 29 (1997), 63-80.doi: 10.1016/S0166-5316(96)00005-3. |
[34] |
J. Wang, An M/G/1 queue with second optional service and server breakdowns, Computers and Mathematics with Applications, 47 (2004), 1713-1723.doi: 10.1016/j.camwa.2004.06.024. |