\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A queueing analysis of multi-purpose production facility's operations

Abstract Related Papers Cited by
  • In this paper, we study the production time allocation issue for a multi-purpose manufacturing facility. This production facility can produce different types of make-to-order and make-to-stock products. Using a vacation queueing model, we develop a set of quantitative performance measures for a two-parameter time allocation policy. Based on the renewal cycle analysis, we derive an average cost expression and propose a search algorithm to find the optimal time allocation policy that minimizes the average cost. Some numerical examples are presented to demonstrate the effectiveness of the search algorithm. The vacation model used in this paper is also a generalization of some previous vacation queueing models in the literature. The results obtained in this study are useful for production managers to design the operating policy in practice.
    Mathematics Subject Classification: Primary: 60K10, 60K25; Secondary: 90B22, 90B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Abolnikov and A. Dukhovny, Markov chains with transition delta-matrix: ergodicity conditions, invariant probability measures and applications, Journal of Applied Mathematics and Stochastic Analysis, 4 (1991), 335-355.doi: 10.1155/S1048953391000254.

    [2]

    J. R. Artalejo and G. Choudhury, Steady state analysis of an M/G/1 queue with repeated attempts and two phase service, Quality Technology and Quantitative Management, 1 (2004), 189-199.

    [3]

    D. Bertsimas and X. Papaconstantinou, On the steady-state solution of the M/C$_2(a,b)$/$S$ queueing system, Transportation Sciences, 22 (1988), 125-138.doi: 10.1287/trsc.22.2.125.

    [4]

    D. Bertsimas and X. Papaconstantinou, Analysis of the stationary $E_k$/$C_2$/S queueing system, European Journal of Operational Research, 37 (1988), 272-282.doi: 10.1016/0377-2217(88)90336-0.

    [5]

    G. Choudhury, Some aspects of an M/G/1 queueing system with optional second service, TOP, 11 (2003), 141-150.doi: 10.1007/BF02578955.

    [6]

    G. Choudhury and K. C. Madan, A two-phase batch arrival queueing system with a vacation time under Bernoulli schedule, Applied Mathematics and Computation, 149 (2004), 337-349.doi: 10.1016/S0096-3003(03)00138-3.

    [7]

    G. Choudhury and K. C. Madan, A two-stage arrival queueing system with a modified Bernoulli schedule vacation under N-policy, Mathematical and Computer Modelling, 42 (2005), 71-85.doi: 10.1016/j.mcm.2005.04.003.

    [8]

    G. Choudhury and M. Paul, A batch arrival queue with an additional service channel under N-policy, Applied Mathematics and Computation, 156 (2004), 115-130.doi: 10.1016/j.amc.2003.07.006.

    [9]

    G. Choudhury and M. Paul, Analysis of a two phases batch arrival queueing model with Bernoulli vacation schedule, Revista Investigatión Operacional, 25 (2004), 217-228.

    [10]

    B. T. Doshi, Queueing systems with vacations: A survey, Queueing Systems, 1 (1986), 29-66.doi: 10.1007/BF01149327.

    [11]

    B. T. Doshi, Single-server queues with vacations, in "Stochastic Analysis of Computer and Communication Systems" (eds. H. Takagi), Noth-Holland, Amsterdam, (1990), 217-265.

    [12]

    B. T. Doshi, Analysis of a two-phase queueing system with general service times, Operations Research Letters, 10 (1991), 265-272.doi: 10.1016/0167-6377(91)90012-E.

    [13]

    A. Federgruen and K. C. So, Optimality of threshold policies in single server queueing system with vacations, Advances in Applied Probability, 23 (1991), 388-405.doi: 10.2307/1427755.

    [14]

    O. Kella, The threshold policy in the M/G/1 queue with server vacations, Naval Research Logistics, 36 (1989), 111-123.doi: 10.1002/1520-6750(198902)36:1<111::AID-NAV3220360109>3.0.CO;2-3.

    [15]

    T. S. Kim and K. C. Chae, Two-phase queueing system with generalized vacation, Journal of the Korean Institute of Industrial Engineers, 22 (1996), 95-104.

    [16]

    T. S. Kim and A. Q. Park, Cycle analysis of a two-phase queueing model with threshold, European Journal of Operational Research, 144 (2003), 157-165.

    [17]

    C. M. Krishna and Y. H. Lee, A study of two-phase service, Operations Research Letters, 9 (1990), 91-97.doi: 10.1016/0167-6377(90)90047-9.

    [18]

    H. W. Lee, S. S. Lee, J. O. Park and K. C. Chae, Analysis of M$^x$/G/1 queue with N policy and multiple vacations, Journal of Applied Probability, 31 (1994), 467-496.doi: 10.2307/3215040.

    [19]

    K. C. Madan, A cyclic queueing system with three servers and optional two-way feedback, Microelectron. Rel., 28 (1988), 873-875.doi: 10.1016/0026-2714(88)90285-5.

    [20]

    K. C. Madan, An M/G/1 queue with second optional service, Queueing Systems, 34 (2000), 37-46.doi: 10.1023/A:1019144716929.

    [21]

    K. C. Madan, On a single server queue with two stage general heterogeneous service and binomial schedule server vacations, The Egyptian Statistical Journal, 44 (2000), 39-55.

    [22]

    K. C. Madan, On a single server queue with two stage general heterogeneous service and deterministic schedule server vacations, International Journal of System Science, 32 (2001), 837-844.doi: 10.1080/00207720121488.

    [23]

    K. C. Madan and M. Al-Rawwash, On the M$^x$/G/1 queue with feedback and optional server vacations based on a single vacation policy, Applied Mathematics and Computation, 160 (2005), 909-919.

    [24]

    K. C. Madan and A. Z. Abu Al-Rub, On a single server queue with optional phase type server vacations based on exhaustive deterministic service and a single vacation policy, Applied Mathematics and Computation, 149 (2004), 723-734.doi: 10.1016/S0096-3003(03)00174-7.

    [25]

    K. C. Madan, A. D. Al-Nasser and A. Q. Al-Masri, On M$^x$/(G1,G2)/1 queue with optional re-service, Applied Mathematics and Computation, 152 (2004), 71-88.doi: 10.1016/S0096-3003(03)00545-9.

    [26]

    J. Medhi, A single server Poisson input queue with a second optional channel, Queueing Systems, 42 (2002), 239-242.doi: 10.1023/A:1020519830116.

    [27]

    D. D. Selvam and V. Sivasankaran, A two-phase queueing system with server vacations, Operations Research Letters, 15 (1994), 163-168.doi: 10.1016/0167-6377(94)90052-3.

    [28]

    L. Tadj and G. Choudhury, Optimal design and control of queues, TOP, 13 (2005), 359-414.doi: 10.1007/BF02579061.

    [29]

    L. Tadj and J-.C. Ke, Control policy of a hysteretic queueing system, Mathematical Methods of Operations Research, 57 (2003), 367-376.

    [30]

    L. Tadj and J-.C. Ke, Control policy of a hysteretic bulk queueing system, Mathematical and Computer Modelling, 5 (2004), 571-579.

    [31]

    H. Takagi, "Queueing Analysis - A Foundation of Performance Evaluation," Vol. 1, Elsevier, Amsterdam, 1991.

    [32]

    N. Tian and Z. G. Zhang, "Vacation Queueing Models - Theory and Applications," Springer-Verlag, New York, 2006.

    [33]

    Z. G. Zhang, R. G. Vickson and M. J. A. van Eenige, Optimal two threshold policies in an M/G/1 queue with two vacation types, Performance Evaluation, 29 (1997), 63-80.doi: 10.1016/S0166-5316(96)00005-3.

    [34]

    J. Wang, An M/G/1 queue with second optional service and server breakdowns, Computers and Mathematics with Applications, 47 (2004), 1713-1723.doi: 10.1016/j.camwa.2004.06.024.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return