Citation: |
[1] |
Y. H. Dai and Y. X. Yuan, "Nonlinear Conjugate Gradient Methods," Shanghai Science and Technology Publisher, Shanghai, 2000. |
[2] |
H. Dan, N. Yamashita and M. Fukushima, Convergence properties of the inexact Levenberg-Marquardt method under local error bound, Optimization Methods and Software, 17 (2002), 605-626.doi: 10.1080/1055678021000049345. |
[3] |
F. Facchinei and C. Kanzow, A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems, Mathematical Programming, 76 (1997), 493-512.doi: 10.1007/BF02614395. |
[4] |
J. Y. Fan and J. Y. Pan, Inexact Levenberg-Marquardt method for nonlinear equations, Discrete Continuous Dynamical System-Series B, 4 (2004), 1223-1232.doi: 10.3934/dcdsb.2004.4.1223. |
[5] |
J. Y. Fan and Y. X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing, 74 (2005), 23-39.doi: 10.1007/s00607-004-0083-1. |
[6] |
A. Fischera, P. K. Shuklaa and M. Wang, On the inexactness level of robust Levenberg-Marquardt methods, Optimization, 59 (2010), 273-287.doi: 10.1080/02331930801951256. |
[7] |
K. Levenberg, A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math., 2 (1944), 164-166. |
[8] |
D. W. Marquardt, An algorithm for least-squares estimation of nonlinear inequalities, SIAM J. Appl. Math., 11 (1963), 431-441.doi: 10.1137/0111030. |
[9] |
G. W. Stewart and J. G. Sun, "Matrix Perturbation Theory," Academic Press, San Diego, CA, 1990. |
[10] |
N. Yamashita and M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, Computing, (Supplement 15), (2001), 237-249. |