• Previous Article
    Existence of anonymous link tolls for decentralizing an oligopolistic game and the efficiency analysis
  • JIMO Home
  • This Issue
  • Next Article
    Optimal control of electrorheological clutch described by nonlinear parabolic equation with nonlocal boundary conditions
April  2011, 7(2): 317-345. doi: 10.3934/jimo.2011.7.317

Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks

1. 

School of Management Science and Engineering, Dalian University of Technology, Dalian 116023, China

2. 

School of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag-3, Wits-2050, Johannesburg, South Africa

3. 

School of Mathematical Science, Dalian University of Technology, Dalian 116024, China

Received  November 2009 Revised  January 2011 Published  April 2011

We consider a class of stochastic nonlinear complementarity problems. We propose a new reformulation of the stochastic complementarity problem, that is, a two-stage stochastic mathematical programming model reformulation. Based on this reformulation, we propose a smoothing-based sample average approximation method for stochastic complementarity problem and prove its convergence. As an application, a supply chain super-network equilibrium is modeled as a stochastic nonlinear complementarity problem and numerical results on the problem are reported.
Citation: Mingzheng Wang, M. Montaz Ali, Guihua Lin. Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks. Journal of Industrial & Management Optimization, 2011, 7 (2) : 317-345. doi: 10.3934/jimo.2011.7.317
References:
[1]

F. Bastin, C. Cirllo and P. L. Toint, Convergence theory for nonconvex stochastic programming with an application to mixed logit,, Mathematical Programming, 108 (2006), 207.  doi: 10.1007/s10107-006-0708-6.  Google Scholar

[2]

X. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems,, Mathematics of Operations Research, 30 (2005), 1022.  doi: 10.1287/moor.1050.0160.  Google Scholar

[3]

X. Chen, C. Zhang and M. Fukushima, Robust solution of stochastic matrix linear complementarity problems,, Mathematical Programming, 117 (2009), 51.   Google Scholar

[4]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", SIAM, (1990).   Google Scholar

[5]

R. W. Cottle, J.-S. Pang and R. Stone, "The linear Complementary Problems,", Academic Press, (1992).   Google Scholar

[6]

J. Dong, D. Zhang and A. Nagurney, A supply chain network equilibrium model with random demands,, European Journal of Operational Research, 156 (2004), 194.  doi: 10.1016/S0377-2217(03)00023-7.  Google Scholar

[7]

F. Facchinei and J-S. Pang, "Finite-Dimensional Variational Inequalities and Complementarity Problems,", Springer, (2003).   Google Scholar

[8]

H. Fang, X. Chen and M. Fukushima, Stochastic $R_0$ Matrix linear complementarity problems,, SIAM Journal on Optimization, 18 (2007), 482.  doi: 10.1137/050630805.  Google Scholar

[9]

G. Gürkan, A. Y. Özge and S. M. Robinson, Sample-path solutions of stochastic variational inequalities,, Mathematical Programming, 84 (1999), 313.  doi: 10.1007/s101070050024.  Google Scholar

[10]

G. H. Lin, X. Chen and M. Fukushima, New restricted NCP functions and their applications to stochastic NCP and stochastic MPEC,, Optimization, 56 (2007), 641.  doi: 10.1080/02331930701617320.  Google Scholar

[11]

G. H. Lin and M. Fukushima, New reformulations for stochastic nonlinear complementarity problems,, Optimization Methods and Software, 21 (2006), 551.  doi: 10.1080/10556780600627610.  Google Scholar

[12]

F. W. Meng and H. Xu, A regularized sample average approximation method for stochastic mathematical programs with nonsmooth equality constraints,, SIAM Journal on Optimization, 17 (2006), 891.  doi: 10.1137/050638242.  Google Scholar

[13]

A. Nagurney, "Network Economics: a Variational Inequality Approach,", Kluwer Academic Publishers, (1999).   Google Scholar

[14]

A. Nagurney, J. Cruz, J. Dong and D. Zhang, Supply chain networks, electronic commence, and supply side and demand side risk,, European Journal of Operational Research, 164 (2005), 120.  doi: 10.1016/j.ejor.2003.11.007.  Google Scholar

[15]

A. Nagurney and J. Dong, "Super-Networks: Decision-Making for the Information Age,", Edward Elgar Publishers, (2002).   Google Scholar

[16]

S. M. Robinson, Analysis of sample-path optimization,, Mathematics of Operations Research, 21 (1996), 513.  doi: 10.1287/moor.21.3.513.  Google Scholar

[17]

A. Ruszcynski and A. Shapiro, Eds., "Stochastic Programming,", Handbooks in OR$&$MS, (2003).   Google Scholar

[18]

T. Santoso, S. Ahmed and A. Shapiro, A stochastic programming approach for suppy chain network design under uncertainty,, European Journal of Operational Research, 167 (2005), 96.  doi: 10.1016/j.ejor.2004.01.046.  Google Scholar

[19]

A. Shapiro, Stochastic mathematical programs with equilibrium constraints,, Journal of Optimization Theory and Application, 128 (2006), 223.  doi: 10.1007/s10957-005-7566-x.  Google Scholar

[20]

A. Shapiro and H. Xu, Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation,, Optimization, 57 (2008), 395.  doi: 10.1080/02331930801954177.  Google Scholar

[21]

R. Storn and K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces,, Journal of Global Optimization, 11 (1997), 341.  doi: 10.1023/A:1008202821328.  Google Scholar

[22]

H. Xu and F. Meng, Convergence analysis of sample average approximation methods for a class of stochastic mathematical programs with equality constraints,, Mathematics of Operations Research, 32 (2007), 648.  doi: 10.1287/moor.1070.0260.  Google Scholar

[23]

C. Zhang and X. Chen, Stochastic nonlinear complementary problem and application to traffic equilibrium under uncertainty,, Journal of Optimization Theory and Applications, 137 (2008), 277.  doi: 10.1007/s10957-008-9358-6.  Google Scholar

show all references

References:
[1]

F. Bastin, C. Cirllo and P. L. Toint, Convergence theory for nonconvex stochastic programming with an application to mixed logit,, Mathematical Programming, 108 (2006), 207.  doi: 10.1007/s10107-006-0708-6.  Google Scholar

[2]

X. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems,, Mathematics of Operations Research, 30 (2005), 1022.  doi: 10.1287/moor.1050.0160.  Google Scholar

[3]

X. Chen, C. Zhang and M. Fukushima, Robust solution of stochastic matrix linear complementarity problems,, Mathematical Programming, 117 (2009), 51.   Google Scholar

[4]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", SIAM, (1990).   Google Scholar

[5]

R. W. Cottle, J.-S. Pang and R. Stone, "The linear Complementary Problems,", Academic Press, (1992).   Google Scholar

[6]

J. Dong, D. Zhang and A. Nagurney, A supply chain network equilibrium model with random demands,, European Journal of Operational Research, 156 (2004), 194.  doi: 10.1016/S0377-2217(03)00023-7.  Google Scholar

[7]

F. Facchinei and J-S. Pang, "Finite-Dimensional Variational Inequalities and Complementarity Problems,", Springer, (2003).   Google Scholar

[8]

H. Fang, X. Chen and M. Fukushima, Stochastic $R_0$ Matrix linear complementarity problems,, SIAM Journal on Optimization, 18 (2007), 482.  doi: 10.1137/050630805.  Google Scholar

[9]

G. Gürkan, A. Y. Özge and S. M. Robinson, Sample-path solutions of stochastic variational inequalities,, Mathematical Programming, 84 (1999), 313.  doi: 10.1007/s101070050024.  Google Scholar

[10]

G. H. Lin, X. Chen and M. Fukushima, New restricted NCP functions and their applications to stochastic NCP and stochastic MPEC,, Optimization, 56 (2007), 641.  doi: 10.1080/02331930701617320.  Google Scholar

[11]

G. H. Lin and M. Fukushima, New reformulations for stochastic nonlinear complementarity problems,, Optimization Methods and Software, 21 (2006), 551.  doi: 10.1080/10556780600627610.  Google Scholar

[12]

F. W. Meng and H. Xu, A regularized sample average approximation method for stochastic mathematical programs with nonsmooth equality constraints,, SIAM Journal on Optimization, 17 (2006), 891.  doi: 10.1137/050638242.  Google Scholar

[13]

A. Nagurney, "Network Economics: a Variational Inequality Approach,", Kluwer Academic Publishers, (1999).   Google Scholar

[14]

A. Nagurney, J. Cruz, J. Dong and D. Zhang, Supply chain networks, electronic commence, and supply side and demand side risk,, European Journal of Operational Research, 164 (2005), 120.  doi: 10.1016/j.ejor.2003.11.007.  Google Scholar

[15]

A. Nagurney and J. Dong, "Super-Networks: Decision-Making for the Information Age,", Edward Elgar Publishers, (2002).   Google Scholar

[16]

S. M. Robinson, Analysis of sample-path optimization,, Mathematics of Operations Research, 21 (1996), 513.  doi: 10.1287/moor.21.3.513.  Google Scholar

[17]

A. Ruszcynski and A. Shapiro, Eds., "Stochastic Programming,", Handbooks in OR$&$MS, (2003).   Google Scholar

[18]

T. Santoso, S. Ahmed and A. Shapiro, A stochastic programming approach for suppy chain network design under uncertainty,, European Journal of Operational Research, 167 (2005), 96.  doi: 10.1016/j.ejor.2004.01.046.  Google Scholar

[19]

A. Shapiro, Stochastic mathematical programs with equilibrium constraints,, Journal of Optimization Theory and Application, 128 (2006), 223.  doi: 10.1007/s10957-005-7566-x.  Google Scholar

[20]

A. Shapiro and H. Xu, Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation,, Optimization, 57 (2008), 395.  doi: 10.1080/02331930801954177.  Google Scholar

[21]

R. Storn and K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces,, Journal of Global Optimization, 11 (1997), 341.  doi: 10.1023/A:1008202821328.  Google Scholar

[22]

H. Xu and F. Meng, Convergence analysis of sample average approximation methods for a class of stochastic mathematical programs with equality constraints,, Mathematics of Operations Research, 32 (2007), 648.  doi: 10.1287/moor.1070.0260.  Google Scholar

[23]

C. Zhang and X. Chen, Stochastic nonlinear complementary problem and application to traffic equilibrium under uncertainty,, Journal of Optimization Theory and Applications, 137 (2008), 277.  doi: 10.1007/s10957-008-9358-6.  Google Scholar

[1]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[2]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[3]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[4]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[5]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[6]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[7]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[8]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[9]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[10]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[11]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[12]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[13]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[14]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[15]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[16]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[17]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[18]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[19]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[20]

Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]