Citation: |
[1] |
F. Bastin, C. Cirllo and P. L. Toint, Convergence theory for nonconvex stochastic programming with an application to mixed logit, Mathematical Programming, 108 (2006), 207-234.doi: 10.1007/s10107-006-0708-6. |
[2] |
X. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems, Mathematics of Operations Research, 30 (2005), 1022-1038.doi: 10.1287/moor.1050.0160. |
[3] |
X. Chen, C. Zhang and M. Fukushima, Robust solution of stochastic matrix linear complementarity problems, Mathematical Programming, Ser. B, 117 (2009), 51-80. |
[4] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," SIAM, 1990. |
[5] |
R. W. Cottle, J.-S. Pang and R. Stone, "The linear Complementary Problems," Academic Press, San Diego, CA, 1992. |
[6] |
J. Dong, D. Zhang and A. Nagurney, A supply chain network equilibrium model with random demands, European Journal of Operational Research, 156 (2004), 194-212.doi: 10.1016/S0377-2217(03)00023-7. |
[7] |
F. Facchinei and J-S. Pang, "Finite-Dimensional Variational Inequalities and Complementarity Problems," Springer, New York, 2003. |
[8] |
H. Fang, X. Chen and M. Fukushima, Stochastic $R_0$ Matrix linear complementarity problems, SIAM Journal on Optimization, 18 (2007), 482-506.doi: 10.1137/050630805. |
[9] |
G. Gürkan, A. Y. Özge and S. M. Robinson, Sample-path solutions of stochastic variational inequalities, Mathematical Programming, 84 (1999), 313-333.doi: 10.1007/s101070050024. |
[10] |
G. H. Lin, X. Chen and M. Fukushima, New restricted NCP functions and their applications to stochastic NCP and stochastic MPEC, Optimization, 56 (2007), 641-653.doi: 10.1080/02331930701617320. |
[11] |
G. H. Lin and M. Fukushima, New reformulations for stochastic nonlinear complementarity problems, Optimization Methods and Software, 21 (2006), 551-564.doi: 10.1080/10556780600627610. |
[12] |
F. W. Meng and H. Xu, A regularized sample average approximation method for stochastic mathematical programs with nonsmooth equality constraints, SIAM Journal on Optimization, 17 (2006), 891-919.doi: 10.1137/050638242. |
[13] |
A. Nagurney, "Network Economics: a Variational Inequality Approach," Kluwer Academic Publishers, Dordrecht, 1999. |
[14] |
A. Nagurney, J. Cruz, J. Dong and D. Zhang, Supply chain networks, electronic commence, and supply side and demand side risk, European Journal of Operational Research, 164 (2005), 120-142.doi: 10.1016/j.ejor.2003.11.007. |
[15] |
A. Nagurney and J. Dong, "Super-Networks: Decision-Making for the Information Age," Edward Elgar Publishers, Cheltenham, England, 2002. |
[16] |
S. M. Robinson, Analysis of sample-path optimization, Mathematics of Operations Research, 21 (1996), 513-528.doi: 10.1287/moor.21.3.513. |
[17] |
A. Ruszcynski and A. Shapiro, Eds., "Stochastic Programming," Handbooks in OR$&$MS, Vol. 10, North-Holland Publishing Company, Amsterdam, 2003. |
[18] |
T. Santoso, S. Ahmed and A. Shapiro, A stochastic programming approach for suppy chain network design under uncertainty, European Journal of Operational Research, 167 (2005), 96-115.doi: 10.1016/j.ejor.2004.01.046. |
[19] |
A. Shapiro, Stochastic mathematical programs with equilibrium constraints, Journal of Optimization Theory and Application, 128 (2006), 223-243.doi: 10.1007/s10957-005-7566-x. |
[20] |
A. Shapiro and H. Xu, Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation, Optimization, 57 (2008), 395-418.doi: 10.1080/02331930801954177. |
[21] |
R. Storn and K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11 (1997), 341-359.doi: 10.1023/A:1008202821328. |
[22] |
H. Xu and F. Meng, Convergence analysis of sample average approximation methods for a class of stochastic mathematical programs with equality constraints, Mathematics of Operations Research, 32 (2007), 648-668.doi: 10.1287/moor.1070.0260. |
[23] |
C. Zhang and X. Chen, Stochastic nonlinear complementary problem and application to traffic equilibrium under uncertainty, Journal of Optimization Theory and Applications, 137 (2008), 277-295.doi: 10.1007/s10957-008-9358-6. |