-
Previous Article
Nonlinear dynamical system modeling via recurrent neural networks and a weighted state space search algorithm
- JIMO Home
- This Issue
-
Next Article
Existence of anonymous link tolls for decentralizing an oligopolistic game and the efficiency analysis
Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method
1. | Department of Industrial Engineering and Management, Hsiuping Institute of Technology, 11 Gungye Road, Dali City, Taichung 412, Taiwan, Taiwan |
References:
[1] |
R. A. Aliev, B. Fazlollahi, B. G. Guirimov and R. R. Aliev, Fuzzy-genetic approach to aggregate production-distribution planning in supply chain management, Information Sciences, 177 (2007), 4241-4255.
doi: 10.1016/j.ins.2007.04.012. |
[2] |
R. E. Bellman and L. A. Zadeh, Decision-making in a fuzzy environment,, Management Sciences, 17 ().
doi: 10.1287/mnsc.17.4.B141. |
[3] |
G. R. Bitran and H. H. Yanassee, Deterministic approximations to stochastic production problem, Operations Research, 32 (1984), 999-1018.
doi: 10.1287/opre.32.5.999. |
[4] |
J. J. Buckley, Possibilistic linear programming with triangular fuzzy numbers, Fuzzy Sets and Systems, 26 (1988), 135-138.
doi: 10.1016/0165-0114(88)90013-9. |
[5] |
M. D. Byrne and M. A. Bakir, Production planning using a hybrid simulation-analytical approach, International Journal of Production Economics, 59 (1999), 305-311.
doi: 10.1016/S0925-5273(98)00104-2. |
[6] |
E. L. Castro de, M. T. Tabucanon and N. N. Nagarur, A Production order quantity model with stochastic demand for a chocolate milk manufacturer, International Journal of Production Economics, 49 (1997), 145-158.
doi: 10.1016/S0925-5273(96)00117-X. |
[7] |
D. Dubois and P. Fortemps, Computing improved optimal solutions to max-min flexible constraint satisfaction problems, European Journal of Operational Research, 118 (1999), 95-126.
doi: 10.1016/S0377-2217(98)00307-5. |
[8] |
B. R. Feiring, Production planning on stochastic demand environments, Mathematical and Computer Modelling, 15 (1991), 91-95.
doi: 10.1016/0895-7177(91)90093-M. |
[9] |
S. E. Fleten and T. K. Kristoffersen, Short-term hydropower production planning by stochastic programming, Computers and Operations Research, 35 (2008), 2656-2671. |
[10] |
R. Y. K. Fung, J. Tang and D. Wang, Multiproduct aggregate production planning with fuzzy demands and fuzzy capacities, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 33 (2003), 302-313.
doi: 10.1109/TSMCA.2003.817032. |
[11] |
S. M. Guu and Y. K. Wu, Two-phase approach for solving the fuzzy linear programming problems, Fuzzy Sets and Systems, 107 (1999), 191-195.
doi: 10.1016/S0165-0114(97)00304-7. |
[12] |
E. L. Hannan, Linear programming with multiple fuzzy goals, Fuzzy Sets and Systems, 6 (1981), 235-248.
doi: 10.1016/0165-0114(81)90002-6. |
[13] |
C. C. Holt, F. Modigliani and H. A. Simon, Linear decision rule for production and employment scheduling, Management Science, 2 (1955), 1-30.
doi: 10.1287/mnsc.2.1.1. |
[14] |
H. M. Hsu, and W. P. Wang, Possibilistic programming in production planning of assemble-to-order environments. Optimization and decision, Fuzzy Sets and Systems, 119 (2001), 59-70.
doi: 10.1016/S0165-0114(99)00086-X. |
[15] |
A. Jain and U. S. Palekar, Aggregate production planning for a continuous reconfigurable manufacturing process, Computers and Operations Research, 32 (2005), 1213-1236. |
[16] |
G. Klir and B. Yuan, "Fuzzy Set and Fuzzy Logic: Theory and Applications," PTR: Prentice Hall (1995) |
[17] |
Y. J. Lai and C. L. Hwang, A new approach to some possibilistic linear programming problems, Fuzzy Sets and Systems, 49 (1992), 121-133.
doi: 10.1016/0165-0114(92)90318-X. |
[18] |
E. S. Lee and R. J. Li, Fuzzy multiple objective programming and computing programming with Pareto optimum, Fuzzy Sets and Systems, 53 (1993), 275-283.
doi: 10.1016/0165-0114(93)90399-3. |
[19] |
S. C. H. Leung and S .S. W. Chan, A goal programming model for aggregate production planning with resource utilization constraint, Computers and Industrial Engineering, 56 (2009), 1053-1064.
doi: 10.1016/j.cie.2008.09.017. |
[20] |
X. Q. Li, B. Zhang and H. Li, Computing efficient solutions to fuzzy multiple objective linear programming problems, Fuzzy Sets and Systems, 157 (2006), 1328-1332.
doi: 10.1016/j.fss.2005.12.003. |
[21] |
T. F. Liang, Application of interactive possibilistic linear programming to aggregate production planning with multiple imprecise objectives, Production Planning and Control, 18 (2007), 548-560.
doi: 10.1080/09537280701530033. |
[22] |
T. F. Liang, Application of fuzzy sets to multi-objective project management decisions in uncertain environments, International Journal of General Systems, 38 (2009), 311-330.
doi: 10.1080/03081070701785833. |
[23] |
S. M. Masud and C. L. Hwang, An aggregate production planning model and application of three multiple objective decision methods, International Journal of Production Research, 18 (1980), 741-752.
doi: 10.1080/00207548008919703. |
[24] |
M. S. Moreno and J. M. Montagna, A multiperiod model for production planning and design in a multiproduct batch environment, Mathematical and Computer Modelling, 49 (2009), 1372-1385.
doi: 10.1016/j.mcm.2008.11.004. |
[25] |
S. J. Nam and R. Logendran, Aggregate production planning - A survey of models and methodologies, European Journal of Operational Research, 61 (1992), 255-272.
doi: 10.1016/0377-2217(92)90356-E. |
[26] |
D. özgen, S. önut, B. Gülsün, U. R. Tuzkaya and G. Tuzkaya, A two-phase methodology for multi- objective supplier evaluation and order allocation problems, Information Sciences, 178 (2008), 485-500.
doi: 10.1016/j.ins.2007.08.002. |
[27] |
D. Petrovic, R. Roy and R. Petrovic, Supply chain modeling using fuzzy sets, International Journal of Production Economics, 59 (1999), 443-453.
doi: 10.1016/S0925-5273(98)00109-1. |
[28] |
J. Ramik and J. Rimanek, Inequality relation between fuzzy numbers and its use in fuzzy optimization, Fuzzy Sets and Systems, 16 (1985), 123-138.
doi: 10.1016/S0165-0114(85)80013-0. |
[29] |
H. Rommelfanger, Fuzzy linear programming and applications, European Journal of Operational Research, 92 (1996), 512-527.
doi: 10.1016/0377-2217(95)00008-9. |
[30] |
G. Saad, An overview of production planning model: structure classification and empirical assessment, International Journal of Production Research, 20 (1982), 105-114.
doi: 10.1080/00207548208947752. |
[31] |
Y. Shi and C. Haase, Optimal trade-offs of aggregate production planning with multi-objective and multi-capacity-demand levels, International Journal of Operations and Quantitative Management, 2 (1996), 127-143. |
[32] |
A. Singhvy, K. P. Madhavan and U. V. Shenoy, Pinch analysis for aggregate production planning in supply chains, Computers and Chemical Engineering, 28 (2004), 993-999.
doi: 10.1016/j.compchemeng.2003.09.006. |
[33] |
C. H. L. Stephen, Y. Wu and K. K. Lai, Multi-site aggregate production planning with multiple objectives: a goal programming approach, Production Planning and Control, 14 (2003), 425-436.
doi: 10.1080/0953728031000154264. |
[34] |
H. Tanaka, H. Ichihashi and K. Asai, A formulation of fuzzy linear programming problem based on comparison of fuzzy numbers, Control and Cybernetics, 13 (1984), 185-194. |
[35] |
J. Tang, R. Y. K. Fung and K. L. Yong, Fuzzy modelling and simulation for aggregate production planning, International Journal of Systems Science, 34 (2003), 661-673.
doi: 10.1080/00207720310001624113. |
[36] |
J. Tang, D. Wang and R. Y. K. Fung, Fuzzy formulation for multi-product aggregate production planning, Production Planning and Control, 11 (2000), 670-676.
doi: 10.1080/095372800432133. |
[37] |
S. A. Torabi and E. Hassini, An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 159 (2008), 193-214.
doi: 10.1016/j.fss.2007.08.010. |
[38] |
P. Vasant, Fuzzy decision making of profit function in production planning using S-curve membership function, Computers and Industrial Engineering, 51 (2006), 715-725.
doi: 10.1016/j.cie.2006.08.017. |
[39] |
D. Wang and S. C. Fang, A genetics-based approach for aggregate production planning in a fuzzy environment, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 27 (1997), 636-645.
doi: 10.1109/3468.618262. |
[40] |
R. C. Wang and H. H. Fang, Aggregate production planning with multiple objectives in a fuzzy environment, European Journal of Operational Research, 133 (2001), 521-536.
doi: 10.1016/S0377-2217(00)00196-X. |
[41] |
R. C. Wang and T. F. Liang, Application of fuzzy multi-objective linear programming to aggregate production planning, Computers and Industrial Engineering, 46 (2004), 17-41.
doi: 10.1016/j.cie.2003.09.009. |
[42] |
R. C. Wang and T. F. Liang, Applying possibilistic linear programming to aggregate production planning, International Journal of Production Economics, 98 (2005), 328-341.
doi: 10.1016/j.ijpe.2004.09.011. |
[43] |
R. C. Wang and T. F. Liang, Aggregate production planning with multiple fuzzy goals, International Journal of Advanced Manufacturing Technology, 25 (2005), 589-597.
doi: 10.1007/s00170-003-1885-6. |
[44] |
Z. Xu and R. R. Yage, Dynamic intuitionistic fuzzy multiple attribute decision making, International Journal of Approximate Reasoning, 48 (2008), 246-262.
doi: 10.1016/j.ijar.2007.08.008. |
[45] |
A. V. Yazenin, Fuzzy and stochastic programming, Fuzzy Sets and Systems, 22 (1987), 171-180.
doi: 10.1016/0165-0114(87)90014-5. |
[46] |
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
[47] |
H. J. Zimmermann, Description and optimization of fuzzy systems, International Journal of General Systems, 2 (1976), 209-215.
doi: 10.1080/03081077608547470. |
[48] |
H. J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems, 1 (1978), 45-56.
doi: 10.1016/0165-0114(78)90031-3. |
[49] |
H. J. Zimmermann, "Fuzzy Set Theory and its Application," Boston: Kluwer Academic, 1996. |
show all references
References:
[1] |
R. A. Aliev, B. Fazlollahi, B. G. Guirimov and R. R. Aliev, Fuzzy-genetic approach to aggregate production-distribution planning in supply chain management, Information Sciences, 177 (2007), 4241-4255.
doi: 10.1016/j.ins.2007.04.012. |
[2] |
R. E. Bellman and L. A. Zadeh, Decision-making in a fuzzy environment,, Management Sciences, 17 ().
doi: 10.1287/mnsc.17.4.B141. |
[3] |
G. R. Bitran and H. H. Yanassee, Deterministic approximations to stochastic production problem, Operations Research, 32 (1984), 999-1018.
doi: 10.1287/opre.32.5.999. |
[4] |
J. J. Buckley, Possibilistic linear programming with triangular fuzzy numbers, Fuzzy Sets and Systems, 26 (1988), 135-138.
doi: 10.1016/0165-0114(88)90013-9. |
[5] |
M. D. Byrne and M. A. Bakir, Production planning using a hybrid simulation-analytical approach, International Journal of Production Economics, 59 (1999), 305-311.
doi: 10.1016/S0925-5273(98)00104-2. |
[6] |
E. L. Castro de, M. T. Tabucanon and N. N. Nagarur, A Production order quantity model with stochastic demand for a chocolate milk manufacturer, International Journal of Production Economics, 49 (1997), 145-158.
doi: 10.1016/S0925-5273(96)00117-X. |
[7] |
D. Dubois and P. Fortemps, Computing improved optimal solutions to max-min flexible constraint satisfaction problems, European Journal of Operational Research, 118 (1999), 95-126.
doi: 10.1016/S0377-2217(98)00307-5. |
[8] |
B. R. Feiring, Production planning on stochastic demand environments, Mathematical and Computer Modelling, 15 (1991), 91-95.
doi: 10.1016/0895-7177(91)90093-M. |
[9] |
S. E. Fleten and T. K. Kristoffersen, Short-term hydropower production planning by stochastic programming, Computers and Operations Research, 35 (2008), 2656-2671. |
[10] |
R. Y. K. Fung, J. Tang and D. Wang, Multiproduct aggregate production planning with fuzzy demands and fuzzy capacities, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 33 (2003), 302-313.
doi: 10.1109/TSMCA.2003.817032. |
[11] |
S. M. Guu and Y. K. Wu, Two-phase approach for solving the fuzzy linear programming problems, Fuzzy Sets and Systems, 107 (1999), 191-195.
doi: 10.1016/S0165-0114(97)00304-7. |
[12] |
E. L. Hannan, Linear programming with multiple fuzzy goals, Fuzzy Sets and Systems, 6 (1981), 235-248.
doi: 10.1016/0165-0114(81)90002-6. |
[13] |
C. C. Holt, F. Modigliani and H. A. Simon, Linear decision rule for production and employment scheduling, Management Science, 2 (1955), 1-30.
doi: 10.1287/mnsc.2.1.1. |
[14] |
H. M. Hsu, and W. P. Wang, Possibilistic programming in production planning of assemble-to-order environments. Optimization and decision, Fuzzy Sets and Systems, 119 (2001), 59-70.
doi: 10.1016/S0165-0114(99)00086-X. |
[15] |
A. Jain and U. S. Palekar, Aggregate production planning for a continuous reconfigurable manufacturing process, Computers and Operations Research, 32 (2005), 1213-1236. |
[16] |
G. Klir and B. Yuan, "Fuzzy Set and Fuzzy Logic: Theory and Applications," PTR: Prentice Hall (1995) |
[17] |
Y. J. Lai and C. L. Hwang, A new approach to some possibilistic linear programming problems, Fuzzy Sets and Systems, 49 (1992), 121-133.
doi: 10.1016/0165-0114(92)90318-X. |
[18] |
E. S. Lee and R. J. Li, Fuzzy multiple objective programming and computing programming with Pareto optimum, Fuzzy Sets and Systems, 53 (1993), 275-283.
doi: 10.1016/0165-0114(93)90399-3. |
[19] |
S. C. H. Leung and S .S. W. Chan, A goal programming model for aggregate production planning with resource utilization constraint, Computers and Industrial Engineering, 56 (2009), 1053-1064.
doi: 10.1016/j.cie.2008.09.017. |
[20] |
X. Q. Li, B. Zhang and H. Li, Computing efficient solutions to fuzzy multiple objective linear programming problems, Fuzzy Sets and Systems, 157 (2006), 1328-1332.
doi: 10.1016/j.fss.2005.12.003. |
[21] |
T. F. Liang, Application of interactive possibilistic linear programming to aggregate production planning with multiple imprecise objectives, Production Planning and Control, 18 (2007), 548-560.
doi: 10.1080/09537280701530033. |
[22] |
T. F. Liang, Application of fuzzy sets to multi-objective project management decisions in uncertain environments, International Journal of General Systems, 38 (2009), 311-330.
doi: 10.1080/03081070701785833. |
[23] |
S. M. Masud and C. L. Hwang, An aggregate production planning model and application of three multiple objective decision methods, International Journal of Production Research, 18 (1980), 741-752.
doi: 10.1080/00207548008919703. |
[24] |
M. S. Moreno and J. M. Montagna, A multiperiod model for production planning and design in a multiproduct batch environment, Mathematical and Computer Modelling, 49 (2009), 1372-1385.
doi: 10.1016/j.mcm.2008.11.004. |
[25] |
S. J. Nam and R. Logendran, Aggregate production planning - A survey of models and methodologies, European Journal of Operational Research, 61 (1992), 255-272.
doi: 10.1016/0377-2217(92)90356-E. |
[26] |
D. özgen, S. önut, B. Gülsün, U. R. Tuzkaya and G. Tuzkaya, A two-phase methodology for multi- objective supplier evaluation and order allocation problems, Information Sciences, 178 (2008), 485-500.
doi: 10.1016/j.ins.2007.08.002. |
[27] |
D. Petrovic, R. Roy and R. Petrovic, Supply chain modeling using fuzzy sets, International Journal of Production Economics, 59 (1999), 443-453.
doi: 10.1016/S0925-5273(98)00109-1. |
[28] |
J. Ramik and J. Rimanek, Inequality relation between fuzzy numbers and its use in fuzzy optimization, Fuzzy Sets and Systems, 16 (1985), 123-138.
doi: 10.1016/S0165-0114(85)80013-0. |
[29] |
H. Rommelfanger, Fuzzy linear programming and applications, European Journal of Operational Research, 92 (1996), 512-527.
doi: 10.1016/0377-2217(95)00008-9. |
[30] |
G. Saad, An overview of production planning model: structure classification and empirical assessment, International Journal of Production Research, 20 (1982), 105-114.
doi: 10.1080/00207548208947752. |
[31] |
Y. Shi and C. Haase, Optimal trade-offs of aggregate production planning with multi-objective and multi-capacity-demand levels, International Journal of Operations and Quantitative Management, 2 (1996), 127-143. |
[32] |
A. Singhvy, K. P. Madhavan and U. V. Shenoy, Pinch analysis for aggregate production planning in supply chains, Computers and Chemical Engineering, 28 (2004), 993-999.
doi: 10.1016/j.compchemeng.2003.09.006. |
[33] |
C. H. L. Stephen, Y. Wu and K. K. Lai, Multi-site aggregate production planning with multiple objectives: a goal programming approach, Production Planning and Control, 14 (2003), 425-436.
doi: 10.1080/0953728031000154264. |
[34] |
H. Tanaka, H. Ichihashi and K. Asai, A formulation of fuzzy linear programming problem based on comparison of fuzzy numbers, Control and Cybernetics, 13 (1984), 185-194. |
[35] |
J. Tang, R. Y. K. Fung and K. L. Yong, Fuzzy modelling and simulation for aggregate production planning, International Journal of Systems Science, 34 (2003), 661-673.
doi: 10.1080/00207720310001624113. |
[36] |
J. Tang, D. Wang and R. Y. K. Fung, Fuzzy formulation for multi-product aggregate production planning, Production Planning and Control, 11 (2000), 670-676.
doi: 10.1080/095372800432133. |
[37] |
S. A. Torabi and E. Hassini, An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 159 (2008), 193-214.
doi: 10.1016/j.fss.2007.08.010. |
[38] |
P. Vasant, Fuzzy decision making of profit function in production planning using S-curve membership function, Computers and Industrial Engineering, 51 (2006), 715-725.
doi: 10.1016/j.cie.2006.08.017. |
[39] |
D. Wang and S. C. Fang, A genetics-based approach for aggregate production planning in a fuzzy environment, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 27 (1997), 636-645.
doi: 10.1109/3468.618262. |
[40] |
R. C. Wang and H. H. Fang, Aggregate production planning with multiple objectives in a fuzzy environment, European Journal of Operational Research, 133 (2001), 521-536.
doi: 10.1016/S0377-2217(00)00196-X. |
[41] |
R. C. Wang and T. F. Liang, Application of fuzzy multi-objective linear programming to aggregate production planning, Computers and Industrial Engineering, 46 (2004), 17-41.
doi: 10.1016/j.cie.2003.09.009. |
[42] |
R. C. Wang and T. F. Liang, Applying possibilistic linear programming to aggregate production planning, International Journal of Production Economics, 98 (2005), 328-341.
doi: 10.1016/j.ijpe.2004.09.011. |
[43] |
R. C. Wang and T. F. Liang, Aggregate production planning with multiple fuzzy goals, International Journal of Advanced Manufacturing Technology, 25 (2005), 589-597.
doi: 10.1007/s00170-003-1885-6. |
[44] |
Z. Xu and R. R. Yage, Dynamic intuitionistic fuzzy multiple attribute decision making, International Journal of Approximate Reasoning, 48 (2008), 246-262.
doi: 10.1016/j.ijar.2007.08.008. |
[45] |
A. V. Yazenin, Fuzzy and stochastic programming, Fuzzy Sets and Systems, 22 (1987), 171-180.
doi: 10.1016/0165-0114(87)90014-5. |
[46] |
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
[47] |
H. J. Zimmermann, Description and optimization of fuzzy systems, International Journal of General Systems, 2 (1976), 209-215.
doi: 10.1080/03081077608547470. |
[48] |
H. J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems, 1 (1978), 45-56.
doi: 10.1016/0165-0114(78)90031-3. |
[49] |
H. J. Zimmermann, "Fuzzy Set Theory and its Application," Boston: Kluwer Academic, 1996. |
[1] |
Ya Liu, Zhaojin Li. Dynamic-programming-based heuristic for multi-objective operating theater planning. Journal of Industrial and Management Optimization, 2022, 18 (1) : 111-135. doi: 10.3934/jimo.2020145 |
[2] |
Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055 |
[3] |
Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074 |
[4] |
Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068 |
[5] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial and Management Optimization, 2022, 18 (1) : 439-456. doi: 10.3934/jimo.2020162 |
[6] |
Zhiqing Meng, Qiying Hu, Chuangyin Dang. A penalty function algorithm with objective parameters for nonlinear mathematical programming. Journal of Industrial and Management Optimization, 2009, 5 (3) : 585-601. doi: 10.3934/jimo.2009.5.585 |
[7] |
Zongmin Li, Jiuping Xu, Wenjing Shen, Benjamin Lev, Xiao Lei. Bilevel multi-objective construction site security planning with twofold random phenomenon. Journal of Industrial and Management Optimization, 2015, 11 (2) : 595-617. doi: 10.3934/jimo.2015.11.595 |
[8] |
Xiliang Sun, Wanjie Hu, Xiaolong Xue, Jianjun Dong. Multi-objective optimization model for planning metro-based underground logistics system network: Nanjing case study. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021179 |
[9] |
Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial and Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581 |
[10] |
Wenjuan Jia, Yingjie Deng, Chenyang Xin, Xiaodong Liu, Witold Pedrycz. A classification algorithm with Linear Discriminant Analysis and Axiomatic Fuzzy Sets. Mathematical Foundations of Computing, 2019, 2 (1) : 73-81. doi: 10.3934/mfc.2019006 |
[11] |
Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619 |
[12] |
Jiuping Xu, Pei Wei. Production-distribution planning of construction supply chain management under fuzzy random environment for large-scale construction projects. Journal of Industrial and Management Optimization, 2013, 9 (1) : 31-56. doi: 10.3934/jimo.2013.9.31 |
[13] |
Rui Qian, Rong Hu, Ya-Ping Fang. Local smooth representation of solution sets in parametric linear fractional programming problems. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 45-52. doi: 10.3934/naco.2019004 |
[14] |
Behrouz Kheirfam, Kamal mirnia. Multi-parametric sensitivity analysis in piecewise linear fractional programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 343-351. doi: 10.3934/jimo.2008.4.343 |
[15] |
Mahmoud Ameri, Armin Jarrahi. An executive model for network-level pavement maintenance and rehabilitation planning based on linear integer programming. Journal of Industrial and Management Optimization, 2020, 16 (2) : 795-811. doi: 10.3934/jimo.2018179 |
[16] |
Charles Fefferman. Interpolation by linear programming I. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477 |
[17] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial and Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[18] |
Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 |
[19] |
Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789 |
[20] |
Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]