• Previous Article
    Convergence property of an interior penalty approach to pricing American option
  • JIMO Home
  • This Issue
  • Next Article
    An integrated approach for the operations of distribution and lateral transshipment for seasonal products - A case study in household product industry
April  2011, 7(2): 425-434. doi: 10.3934/jimo.2011.7.425

A market selection and inventory ordering problem under demand uncertainty

1. 

Department of Management Science and Engineering, School of Economics and Management, Southeast University, Nanjing 211189, China, China, China

Received  October 2010 Revised  January 2011 Published  April 2011

We study an integrated market selection and inventory control problem that was initially proposed by Geunes et al. [Naval Research Logistics, 51(1):117-136, 2004]. This problem generalizes the classical EOQ problem by incorporating the market choice decisions. In this note, we further consider the problem with stochastic demand in which we assume the demand mean and variance are known for each market. We show that the problem can be formulated as an unconstrained nonlinear binary IP model. Its special structure leads to efficient solution algorithms and we summarize some interesting observations via numerical experiments.
Citation: Jia Shu, Zhengyi Li, Weijun Zhong. A market selection and inventory ordering problem under demand uncertainty. Journal of Industrial & Management Optimization, 2011, 7 (2) : 425-434. doi: 10.3934/jimo.2011.7.425
References:
[1]

I. S. Bakal, J. Geunes and H. E. Romeijn, Market selection decisions for inventory models with price-sensitive demand,, Journal of Global Optimization, 4 (2008), 633.  doi: 10.1007/s10898-007-9269-3.  Google Scholar

[2]

K. Chahar and K. Taaffe, Risk averse demand selection with all-or-nothing orders,, OMEGA-International Journal of Management Science, 37 (2009), 996.  doi: 10.1016/j.omega.2008.11.004.  Google Scholar

[3]

A. K. Chakravarty, J. B. Orlin and U. G. Rothblum, Consecutive optimizers for a partitioning problem with applications to optimal inventory groupings for joint replenishment,, Operations Research, 33 (1985), 820.  doi: 10.1287/opre.33.4.820.  Google Scholar

[4]

M. S. Daskin, C.R. Coullard and Z. J. Max Shen, An inventory-location model: formulation, solution algorithm and computational results,, Recent developments in the theory and applications of location models, 110 (2002), 83.  doi: 10.1023/A:1020763400324.  Google Scholar

[5]

J. Geunes, Z. J. Max Shen and H. E. Romeijn, Economic ordering decisions with market selection flexibility,, Naval Research Logistics, 51 (2004), 117.  doi: 10.1002/nav.10109.  Google Scholar

[6]

J. Geunes, H. E. Romeijn and K. Taaffe, Requirements planning with dynamic pricing and order selection flexibility,, Operations Research, 54 (2006), 394.  doi: 10.1287/opre.1050.0255.  Google Scholar

[7]

J. Geunes, R. Levi, H. E. Romeijn and D. Shmoys, Approximation algorithms for supply chain planning problems with market choice,, Mathematical Programming, ().   Google Scholar

[8]

S. Nahmias, "Production and Operations Management,", Irwin, (1997).   Google Scholar

[9]

M. Önal and H. E. Romeijn, Two-echelon requirements planning with pricing decisions,, Journal of Industrial and Management Optimization, 5 (2009), 767.  doi: 10.3934/jimo.2009.5.767.  Google Scholar

[10]

L. Ozsen, C. R. Coullard and M. S. Daskin, Capacitated warehouse location model with risk pooling,, Naval Research Logistics, 55 (2008), 295.  doi: 10.1002/nav.20282.  Google Scholar

[11]

L. Ozsen, M. S. Daskin and C. R. Coullard, Facility location modeling and inventory management with multisourcing,, Transportation Science, 43 (2009), 455.  doi: 10.1287/trsc.1090.0268.  Google Scholar

[12]

Z. J. Max Shen, A multi-commodity supply chain design problem,, IIE Transactions, 37 (2005), 753.  doi: 10.1080/07408170590961120.  Google Scholar

[13]

Z. J. Max Shen, C. R. Coullard and M. S. Daskin, A joint location-inventory model,, Transportation Science, 37 (2003), 40.  doi: 10.1287/trsc.37.1.40.12823.  Google Scholar

[14]

J. Shu, C. P. Teo and Z. J. Max Shen, Stochastic transportation-inventory network design problem,, Operations Research, 53 (2005), 48.  doi: 10.1287/opre.1040.0140.  Google Scholar

[15]

L. V. Snyder, M. S. Daskin and C. P. Teo, The stochastic location model with risk pooling,, European Journal of Operational Research, 179 (2007), 1221.  doi: 10.1016/j.ejor.2005.03.076.  Google Scholar

[16]

K. Taaffe, J. Geunes and H. E. Romeijn, Target market selection and marketing effort under uncertainty: the selective newsvendor,, European Journal of Operational Research, 189 (2008), 987.  doi: 10.1016/j.ejor.2006.11.049.  Google Scholar

[17]

K. Taaffe, H. E. Romeijn and D. Tirumalasetty, A selective newsvendor approach to order management,, Naval Research Logistics, 55 (2008), 769.  doi: 10.1002/nav.20320.  Google Scholar

[18]

V. N. Vapnik and A. Y. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities,, Theory of Probability and Its Applications, 16 (1971), 264.  doi: 10.1137/1116025.  Google Scholar

[19]

L. Zhang and S.-Y. Wu, Robust solutions to euclidean facility location problems with uncertain data,, Journal of Industrial and Management Optimization, 6 (2010), 751.  doi: 10.3934/jimo.2010.6.751.  Google Scholar

show all references

References:
[1]

I. S. Bakal, J. Geunes and H. E. Romeijn, Market selection decisions for inventory models with price-sensitive demand,, Journal of Global Optimization, 4 (2008), 633.  doi: 10.1007/s10898-007-9269-3.  Google Scholar

[2]

K. Chahar and K. Taaffe, Risk averse demand selection with all-or-nothing orders,, OMEGA-International Journal of Management Science, 37 (2009), 996.  doi: 10.1016/j.omega.2008.11.004.  Google Scholar

[3]

A. K. Chakravarty, J. B. Orlin and U. G. Rothblum, Consecutive optimizers for a partitioning problem with applications to optimal inventory groupings for joint replenishment,, Operations Research, 33 (1985), 820.  doi: 10.1287/opre.33.4.820.  Google Scholar

[4]

M. S. Daskin, C.R. Coullard and Z. J. Max Shen, An inventory-location model: formulation, solution algorithm and computational results,, Recent developments in the theory and applications of location models, 110 (2002), 83.  doi: 10.1023/A:1020763400324.  Google Scholar

[5]

J. Geunes, Z. J. Max Shen and H. E. Romeijn, Economic ordering decisions with market selection flexibility,, Naval Research Logistics, 51 (2004), 117.  doi: 10.1002/nav.10109.  Google Scholar

[6]

J. Geunes, H. E. Romeijn and K. Taaffe, Requirements planning with dynamic pricing and order selection flexibility,, Operations Research, 54 (2006), 394.  doi: 10.1287/opre.1050.0255.  Google Scholar

[7]

J. Geunes, R. Levi, H. E. Romeijn and D. Shmoys, Approximation algorithms for supply chain planning problems with market choice,, Mathematical Programming, ().   Google Scholar

[8]

S. Nahmias, "Production and Operations Management,", Irwin, (1997).   Google Scholar

[9]

M. Önal and H. E. Romeijn, Two-echelon requirements planning with pricing decisions,, Journal of Industrial and Management Optimization, 5 (2009), 767.  doi: 10.3934/jimo.2009.5.767.  Google Scholar

[10]

L. Ozsen, C. R. Coullard and M. S. Daskin, Capacitated warehouse location model with risk pooling,, Naval Research Logistics, 55 (2008), 295.  doi: 10.1002/nav.20282.  Google Scholar

[11]

L. Ozsen, M. S. Daskin and C. R. Coullard, Facility location modeling and inventory management with multisourcing,, Transportation Science, 43 (2009), 455.  doi: 10.1287/trsc.1090.0268.  Google Scholar

[12]

Z. J. Max Shen, A multi-commodity supply chain design problem,, IIE Transactions, 37 (2005), 753.  doi: 10.1080/07408170590961120.  Google Scholar

[13]

Z. J. Max Shen, C. R. Coullard and M. S. Daskin, A joint location-inventory model,, Transportation Science, 37 (2003), 40.  doi: 10.1287/trsc.37.1.40.12823.  Google Scholar

[14]

J. Shu, C. P. Teo and Z. J. Max Shen, Stochastic transportation-inventory network design problem,, Operations Research, 53 (2005), 48.  doi: 10.1287/opre.1040.0140.  Google Scholar

[15]

L. V. Snyder, M. S. Daskin and C. P. Teo, The stochastic location model with risk pooling,, European Journal of Operational Research, 179 (2007), 1221.  doi: 10.1016/j.ejor.2005.03.076.  Google Scholar

[16]

K. Taaffe, J. Geunes and H. E. Romeijn, Target market selection and marketing effort under uncertainty: the selective newsvendor,, European Journal of Operational Research, 189 (2008), 987.  doi: 10.1016/j.ejor.2006.11.049.  Google Scholar

[17]

K. Taaffe, H. E. Romeijn and D. Tirumalasetty, A selective newsvendor approach to order management,, Naval Research Logistics, 55 (2008), 769.  doi: 10.1002/nav.20320.  Google Scholar

[18]

V. N. Vapnik and A. Y. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities,, Theory of Probability and Its Applications, 16 (1971), 264.  doi: 10.1137/1116025.  Google Scholar

[19]

L. Zhang and S.-Y. Wu, Robust solutions to euclidean facility location problems with uncertain data,, Journal of Industrial and Management Optimization, 6 (2010), 751.  doi: 10.3934/jimo.2010.6.751.  Google Scholar

[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[4]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[5]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[6]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[7]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[8]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[9]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[10]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[11]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[12]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[13]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[14]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[15]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[16]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[17]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[18]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[19]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[20]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]