April  2011, 7(2): 435-447. doi: 10.3934/jimo.2011.7.435

Convergence property of an interior penalty approach to pricing American option

1. 

Department of Finance, Business School, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060

2. 

School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009

Received  February 2010 Revised  February 2011 Published  April 2011

This paper establishes a convergence theory for an interior penalty method for a linear complementarity problem governing American option valuation. By introducing an interior penalty term, we first transform the complementarity problem into a nonlinear degenerated Black-Scholes PDE. We then prove that the PDE is uniquely solvable and its solution converges to that of the original complementarity problem. Furthermore, we demonstrate the advantages of the interior penalty method over exterior penalty methods by comparing it with an existing exterior penalty method.
Citation: Kai Zhang, Song Wang. Convergence property of an interior penalty approach to pricing American option. Journal of Industrial & Management Optimization, 2011, 7 (2) : 435-447. doi: 10.3934/jimo.2011.7.435
References:
[1]

A. Bensoussan and J. L. Lions, "Applications of Variational Inequalities in Stochastic Control,", North-Holland, (1982).   Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Political Economy, 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[3]

M. Brennan and E. Schwartz, The valuation of American put options,, J. Finance, 32 (1977), 449.  doi: 10.2307/2326779.  Google Scholar

[4]

J. C. Cox, S. A. Ross and M. Rubinstein, Option pricing: A simplified approach,, J. Financial Econom., 7 (1979), 229.  doi: 10.1016/0304-405X(79)90015-1.  Google Scholar

[5]

G. Dauvaut and L. J. Lions, "Inequalities in Mechanics and Physics,", Springer-Verlag, (1976).   Google Scholar

[6]

M. A. H. Dempster, J. P. Hutton and D. G. Richards, LP valuation of exotic American options exploiting structure,, J. Comp. Fin., 2 (1998), 61.   Google Scholar

[7]

E. M. Elliot and J. R. Ockendon, "Weak and Variational Methods for Moving Boundary Problems,", Pitman, (1982).   Google Scholar

[8]

P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method,, SIAM J. on Sci. Comput., 23 (2002), 2095.  doi: 10.1137/S1064827500382324.  Google Scholar

[9]

R. Glowinski, "Numerical Methods for Nonlinear Variational Problems,", Springer-Verlag, (1984).   Google Scholar

[10]

J. Haslinger, M. Miettinen and D. P. Panagiotopoulos, "Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications,", Kluwer Academic Publishers, (1999).   Google Scholar

[11]

J. Huang and J.-S. Pang, Option pricing and linear complementarity,, J. Comp. Fin., 2 (1998), 31.   Google Scholar

[12]

A. Q. M. Khaliq, D. A. Voss and S. H. K. Kazmi, A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach,, J. Banking Finance, 30 (2006), 489.  doi: 10.1016/j.jbankfin.2005.04.017.  Google Scholar

[13]

B. F. Nielsen, O. Skavhaug and A. Tveito, Penalty and front-fixing methods for the numerical solution of American option problems,, J. Comp. Fin., 5 (2001), 69.   Google Scholar

[14]

B. F. Nielsen, O. Skavhaug and A. Tveito, Penalty methods for the numerical solution of American multi-asset option problems,, J. Comput. Appl. Math., 222 (2008), 3.  doi: 10.1016/j.cam.2007.10.041.  Google Scholar

[15]

S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation,, J. Optim. Theory Appl., 129 (2006), 227.  doi: 10.1007/s10957-006-9062-3.  Google Scholar

[16]

P. Wilmott, J. Dewynne and S. Howison, "Option Pricing: Mathematical Models and Computation,", Oxford Financial Press, (1994).   Google Scholar

[17]

K. Zhang, S. Wang, X. Q. Yang and K. L. Teo, A power penalty approach to numerical solution of two-factor American option pricing,, Numer. Math: TMA, 2 (2009), 202.   Google Scholar

[18]

K. Zhang, X. Q. Yang and K. L. Teo, A power penalty approach to American option pricing with jump diffusion processes,, JIMO, 4 (2008), 767.   Google Scholar

[19]

R. Zvan, P. A. Forsyth and K. R. Vetzal, Penalty methods for American options with stochastic volatility,, J. Comput. Appl. Math., 91 (1998), 199.  doi: 10.1016/S0377-0427(98)00037-5.  Google Scholar

show all references

References:
[1]

A. Bensoussan and J. L. Lions, "Applications of Variational Inequalities in Stochastic Control,", North-Holland, (1982).   Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Political Economy, 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[3]

M. Brennan and E. Schwartz, The valuation of American put options,, J. Finance, 32 (1977), 449.  doi: 10.2307/2326779.  Google Scholar

[4]

J. C. Cox, S. A. Ross and M. Rubinstein, Option pricing: A simplified approach,, J. Financial Econom., 7 (1979), 229.  doi: 10.1016/0304-405X(79)90015-1.  Google Scholar

[5]

G. Dauvaut and L. J. Lions, "Inequalities in Mechanics and Physics,", Springer-Verlag, (1976).   Google Scholar

[6]

M. A. H. Dempster, J. P. Hutton and D. G. Richards, LP valuation of exotic American options exploiting structure,, J. Comp. Fin., 2 (1998), 61.   Google Scholar

[7]

E. M. Elliot and J. R. Ockendon, "Weak and Variational Methods for Moving Boundary Problems,", Pitman, (1982).   Google Scholar

[8]

P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method,, SIAM J. on Sci. Comput., 23 (2002), 2095.  doi: 10.1137/S1064827500382324.  Google Scholar

[9]

R. Glowinski, "Numerical Methods for Nonlinear Variational Problems,", Springer-Verlag, (1984).   Google Scholar

[10]

J. Haslinger, M. Miettinen and D. P. Panagiotopoulos, "Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications,", Kluwer Academic Publishers, (1999).   Google Scholar

[11]

J. Huang and J.-S. Pang, Option pricing and linear complementarity,, J. Comp. Fin., 2 (1998), 31.   Google Scholar

[12]

A. Q. M. Khaliq, D. A. Voss and S. H. K. Kazmi, A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach,, J. Banking Finance, 30 (2006), 489.  doi: 10.1016/j.jbankfin.2005.04.017.  Google Scholar

[13]

B. F. Nielsen, O. Skavhaug and A. Tveito, Penalty and front-fixing methods for the numerical solution of American option problems,, J. Comp. Fin., 5 (2001), 69.   Google Scholar

[14]

B. F. Nielsen, O. Skavhaug and A. Tveito, Penalty methods for the numerical solution of American multi-asset option problems,, J. Comput. Appl. Math., 222 (2008), 3.  doi: 10.1016/j.cam.2007.10.041.  Google Scholar

[15]

S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation,, J. Optim. Theory Appl., 129 (2006), 227.  doi: 10.1007/s10957-006-9062-3.  Google Scholar

[16]

P. Wilmott, J. Dewynne and S. Howison, "Option Pricing: Mathematical Models and Computation,", Oxford Financial Press, (1994).   Google Scholar

[17]

K. Zhang, S. Wang, X. Q. Yang and K. L. Teo, A power penalty approach to numerical solution of two-factor American option pricing,, Numer. Math: TMA, 2 (2009), 202.   Google Scholar

[18]

K. Zhang, X. Q. Yang and K. L. Teo, A power penalty approach to American option pricing with jump diffusion processes,, JIMO, 4 (2008), 767.   Google Scholar

[19]

R. Zvan, P. A. Forsyth and K. R. Vetzal, Penalty methods for American options with stochastic volatility,, J. Comput. Appl. Math., 91 (1998), 199.  doi: 10.1016/S0377-0427(98)00037-5.  Google Scholar

[1]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[2]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[3]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[4]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[7]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[8]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[9]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[10]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[11]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[12]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[13]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[14]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[15]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[16]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[17]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[18]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[19]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[20]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]