-
Previous Article
Optimality conditions for approximate solutions of vector optimization problems
- JIMO Home
- This Issue
-
Next Article
Overbooking with transference option for flights
A nonmonotone smoothing Newton algorithm for solving box constrained variational inequalities with a $P_0$ function
1. | College of Science, Civil Aviation University of China, Tianjin 300300, China |
2. | Department of Mathematics, School of Science, Tianjin University, Tianjin 300072 |
References:
[1] |
S. C. Billups, S. P. Dirkse and M. C. Soares, A comparison of algorithms for large scale mixed complementarity problems,, Comput. Optim. Appl., 7 (1997), 3.
doi: 10.1023/A:1008632215341. |
[2] |
B. Chen and X. Chen, A global linear and local quadratic continuation smoothing method for variational inequalities with box constraints,, Comput. Optim. Appl., 13 (2000), 131.
doi: 10.1023/A:1026546230851. |
[3] |
C. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems,, Comput. Optim. Appl., 5 (1996), 97.
doi: 10.1007/BF00249052. |
[4] |
J.-S. Chen, The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem,, J. Global Optim., 36 (2006), 565.
doi: 10.1007/s10898-006-9027-y. |
[5] |
J.-S. Chen and P. H. Pan, A family of NCP functions and a descent method for the nonlinear complementarity problem,, Comput. Optim. Appl., 40 (2008), 389.
doi: 10.1007/s10589-007-9086-0. |
[6] |
J.-S. Chen, S. H. Pan and T. C. Lin, A smoothing Newton method based on the generalized Fischer-Burmeister function for MCPs,, Nonlinear Anal.: TMA, 72 (2010), 3739.
doi: 10.1016/j.na.2010.01.012. |
[7] |
J.-S. Chen, S. H. Pan and C. Y. Yang, Numerical comparisons of two effective method for mixed complementarity problems,, J. Comput. Appl. Math., 234 (2010), 667.
doi: 10.1016/j.cam.2010.01.004. |
[8] |
X. Chen, L. Qi and D. Sun, Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities,, Math. Comput., 67 (1998), 519.
doi: 10.1090/S0025-5718-98-00932-6. |
[9] |
X. Chen and Y. Ye, On homotopy-smoothing methods for box-constrained variational inequalities,, SIAM J. Control Optim., 37 (1999), 589.
doi: 10.1137/S0363012997315907. |
[10] |
F. Facchinei, A. Fischer and C. Kanzow, A semismooth Newton method for variational inequalities: The case of box constraints,, in, (1997), 76.
|
[11] |
M. Ferris, C. Kanzow and T. S. Munson, Feasible descent algorithms for mixed complentarity problems,, Math. Program., 86 (1999), 475.
doi: 10.1007/s101070050101. |
[12] |
A. Fischer, Solution of monotone complementarity problems with Lipschitzian functions,, Math. Program., 76 (1997), 513.
doi: 10.1007/BF02614396. |
[13] |
M. S. Gowda and J. J. Sznajder, Weak univalence and connectedness of inverse images of continuous functions,, Math. Oper. Res., 24 (1999), 255.
doi: 10.1287/moor.24.1.255. |
[14] |
M. S. Gowda and M. A. Tawhid, Existence and limiting behavior of trajectories associated with $P_0$-equations,, Comput. Optim. Appl., 12 (1999), 229.
doi: 10.1023/A:1008688302346. |
[15] |
S. L. Hu and Z. H. Huang, Smoothness of a class of generalized merit functions for the second-order cone complementarity problem,, Pacific J. Optim., 6 (2010), 551.
|
[16] |
S. L. Hu, Z. H. Huang and J.-S. Chen, Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems,, J. Comput. Appl. Math., 230 (2009), 69.
doi: 10.1016/j.cam.2008.10.056. |
[17] |
S. L. Hu, Z. H. Huang and N. Lu, A non-monotone line search algorithm for unconstrained optimization,, J. Sci. Comput., 42 (2010), 38.
doi: 10.1007/s10915-009-9314-0. |
[18] |
S. L. Hu, Z.H. Huang and P. Wang, A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problems,, Optim. Methods Softw., 24 (2009), 447.
doi: 10.1080/10556780902769862. |
[19] |
Z. H. Huang, L. Qi and D. Sun, Sub-quadratic convergence of a smoothing Newton algorithm for the $P_0$- and monotone LCP,, Math. Program., 99 (2004), 423.
doi: 10.1007/s10107-003-0457-8. |
[20] |
C. Kanzow and M. Fukushima, Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities,, Math. Program., 83 (1998), 55.
doi: 10.1007/BF02680550. |
[21] |
C. Kanzow and S. Petra, Projected filter trust region methods for a semismooth least squares formulation of mixed complementarity problems,, Optim. Methods Softw., 22 (2007), 713.
doi: 10.1080/10556780701296455. |
[22] |
D. Li and M. Fukushima, Smoothing Newton and quasi-Newton methods for mixed complementarity problems,, Comput. Optim. Appl., 17 (2000), 203.
doi: 10.1023/A:1026502415830. |
[23] |
J. M. Peng, C. Kanzow and M. Fukushima, A hybrid Josephy-Newton method for solving box constrained variational inequality problems via the D-gap function,, Optim. Methods Softw., 10 (1999), 687.
doi: 10.1080/10556789908805734. |
[24] |
H. D. Qi, A regularized smoothing Newton method for box constrained variational inequality problems with $P_0$-functions,, SIAM J. Optim., 10 (2000), 315.
doi: 10.1137/S1052623497324047. |
[25] |
L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems,, Math. Program., 87 (2000), 1.
|
[26] |
L. Qi and J. Sun, A nonsmooth version of Newton's method,, Math. Program., 58 (1993), 353.
doi: 10.1007/BF01581275. |
[27] |
G. Ravindran and M. S. Gowda, Regularization of $P_0$-functions in box variational inequality problems,, SIAM J. Optim., 11 (2001), 748.
doi: 10.1137/S1052623497329567. |
[28] |
D. Sun and R. S. Womersley, A new unconstrained differentiable merit function for box constrained variational inequality problems and a damped Guass-Newton method,, SIAM J. Optim., 9 (1999), 388.
doi: 10.1137/S1052623496314173. |
show all references
References:
[1] |
S. C. Billups, S. P. Dirkse and M. C. Soares, A comparison of algorithms for large scale mixed complementarity problems,, Comput. Optim. Appl., 7 (1997), 3.
doi: 10.1023/A:1008632215341. |
[2] |
B. Chen and X. Chen, A global linear and local quadratic continuation smoothing method for variational inequalities with box constraints,, Comput. Optim. Appl., 13 (2000), 131.
doi: 10.1023/A:1026546230851. |
[3] |
C. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems,, Comput. Optim. Appl., 5 (1996), 97.
doi: 10.1007/BF00249052. |
[4] |
J.-S. Chen, The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem,, J. Global Optim., 36 (2006), 565.
doi: 10.1007/s10898-006-9027-y. |
[5] |
J.-S. Chen and P. H. Pan, A family of NCP functions and a descent method for the nonlinear complementarity problem,, Comput. Optim. Appl., 40 (2008), 389.
doi: 10.1007/s10589-007-9086-0. |
[6] |
J.-S. Chen, S. H. Pan and T. C. Lin, A smoothing Newton method based on the generalized Fischer-Burmeister function for MCPs,, Nonlinear Anal.: TMA, 72 (2010), 3739.
doi: 10.1016/j.na.2010.01.012. |
[7] |
J.-S. Chen, S. H. Pan and C. Y. Yang, Numerical comparisons of two effective method for mixed complementarity problems,, J. Comput. Appl. Math., 234 (2010), 667.
doi: 10.1016/j.cam.2010.01.004. |
[8] |
X. Chen, L. Qi and D. Sun, Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities,, Math. Comput., 67 (1998), 519.
doi: 10.1090/S0025-5718-98-00932-6. |
[9] |
X. Chen and Y. Ye, On homotopy-smoothing methods for box-constrained variational inequalities,, SIAM J. Control Optim., 37 (1999), 589.
doi: 10.1137/S0363012997315907. |
[10] |
F. Facchinei, A. Fischer and C. Kanzow, A semismooth Newton method for variational inequalities: The case of box constraints,, in, (1997), 76.
|
[11] |
M. Ferris, C. Kanzow and T. S. Munson, Feasible descent algorithms for mixed complentarity problems,, Math. Program., 86 (1999), 475.
doi: 10.1007/s101070050101. |
[12] |
A. Fischer, Solution of monotone complementarity problems with Lipschitzian functions,, Math. Program., 76 (1997), 513.
doi: 10.1007/BF02614396. |
[13] |
M. S. Gowda and J. J. Sznajder, Weak univalence and connectedness of inverse images of continuous functions,, Math. Oper. Res., 24 (1999), 255.
doi: 10.1287/moor.24.1.255. |
[14] |
M. S. Gowda and M. A. Tawhid, Existence and limiting behavior of trajectories associated with $P_0$-equations,, Comput. Optim. Appl., 12 (1999), 229.
doi: 10.1023/A:1008688302346. |
[15] |
S. L. Hu and Z. H. Huang, Smoothness of a class of generalized merit functions for the second-order cone complementarity problem,, Pacific J. Optim., 6 (2010), 551.
|
[16] |
S. L. Hu, Z. H. Huang and J.-S. Chen, Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems,, J. Comput. Appl. Math., 230 (2009), 69.
doi: 10.1016/j.cam.2008.10.056. |
[17] |
S. L. Hu, Z. H. Huang and N. Lu, A non-monotone line search algorithm for unconstrained optimization,, J. Sci. Comput., 42 (2010), 38.
doi: 10.1007/s10915-009-9314-0. |
[18] |
S. L. Hu, Z.H. Huang and P. Wang, A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problems,, Optim. Methods Softw., 24 (2009), 447.
doi: 10.1080/10556780902769862. |
[19] |
Z. H. Huang, L. Qi and D. Sun, Sub-quadratic convergence of a smoothing Newton algorithm for the $P_0$- and monotone LCP,, Math. Program., 99 (2004), 423.
doi: 10.1007/s10107-003-0457-8. |
[20] |
C. Kanzow and M. Fukushima, Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities,, Math. Program., 83 (1998), 55.
doi: 10.1007/BF02680550. |
[21] |
C. Kanzow and S. Petra, Projected filter trust region methods for a semismooth least squares formulation of mixed complementarity problems,, Optim. Methods Softw., 22 (2007), 713.
doi: 10.1080/10556780701296455. |
[22] |
D. Li and M. Fukushima, Smoothing Newton and quasi-Newton methods for mixed complementarity problems,, Comput. Optim. Appl., 17 (2000), 203.
doi: 10.1023/A:1026502415830. |
[23] |
J. M. Peng, C. Kanzow and M. Fukushima, A hybrid Josephy-Newton method for solving box constrained variational inequality problems via the D-gap function,, Optim. Methods Softw., 10 (1999), 687.
doi: 10.1080/10556789908805734. |
[24] |
H. D. Qi, A regularized smoothing Newton method for box constrained variational inequality problems with $P_0$-functions,, SIAM J. Optim., 10 (2000), 315.
doi: 10.1137/S1052623497324047. |
[25] |
L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems,, Math. Program., 87 (2000), 1.
|
[26] |
L. Qi and J. Sun, A nonsmooth version of Newton's method,, Math. Program., 58 (1993), 353.
doi: 10.1007/BF01581275. |
[27] |
G. Ravindran and M. S. Gowda, Regularization of $P_0$-functions in box variational inequality problems,, SIAM J. Optim., 11 (2001), 748.
doi: 10.1137/S1052623497329567. |
[28] |
D. Sun and R. S. Womersley, A new unconstrained differentiable merit function for box constrained variational inequality problems and a damped Guass-Newton method,, SIAM J. Optim., 9 (1999), 388.
doi: 10.1137/S1052623496314173. |
[1] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[2] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[3] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[4] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[5] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[6] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[7] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[8] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[9] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[10] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[11] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[12] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[13] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[14] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[15] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[16] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[17] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[18] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[19] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[20] |
Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021070 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]