• Previous Article
    Finding a stable solution of a system of nonlinear equations arising from dynamic systems
  • JIMO Home
  • This Issue
  • Next Article
    A nonmonotone smoothing Newton algorithm for solving box constrained variational inequalities with a $P_0$ function
April  2011, 7(2): 483-496. doi: 10.3934/jimo.2011.7.483

Optimality conditions for approximate solutions of vector optimization problems

1. 

Department of Mathematics, Chongqing Normal University, Chongqing 400047, China

2. 

Department of Mathematics and Statistics, Curtin University, G.P.O. Box U1987, Perth, WA 6845

Received  October 2009 Revised  March 2011 Published  April 2011

In this paper, we introduce a new kind of properly approximate efficient solution of vector optimization problems. Some properties for this new class of approximate solutions are established. Also necessary and sufficient conditions via nonlinear scalarizations are obtained for properly approximate solutions. And under the assumption of cone subconvexlike functions, we derive linear scalarizations for properly approximate efficient solutions.
Citation: Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483
References:
[1]

E. M. Bednarczuk and M. J. Przybyla, The vector-valued variational principle in Banach spaces ordered by cones with nonempty interiors,, SIAM J. Optim., 18 (2007), 907.  doi: 10.1137/060658989.  Google Scholar

[2]

M. Beldiman, E. Panaitescu and L. Dogaru, Approximate quasi efficient solutions in multiobjective optimization,, Bull. Math. Soc. Sci. Math. Roumanie Tome, 99 (2008), 109.   Google Scholar

[3]

H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones,, J. Math. Anal. Appl., 71 (1979), 232.  doi: 10.1016/0022-247X(79)90226-9.  Google Scholar

[4]

S. Bolintinéanu, Vector variational principles: $\epsilon-$efficiency and scalar stationarity,, J. Convex Anal., 8 (2001), 71.   Google Scholar

[5]

J. Borwein, Proper efficient points for maximizations with respect to cones,, SIAM J. Control Optim., 15 (1977), 57.  doi: 10.1137/0315004.  Google Scholar

[6]

G. Y. Chen, X. X. Huang and X. M. Yang, "Vector Optimization. Set-Valued and Variational Analysis,", Lecture Notes in Econom. and Math. Systems \textbf{541}, 541 (2005).   Google Scholar

[7]

J. Dutta and V. Vetrivel, On approximate minima in vector optimization,, Numer. Func. Anal. Optim., 22 (2001), 845.  doi: 10.1081/NFA-100108312.  Google Scholar

[8]

M. Durea, J. Dutta and C. Tammer, Lagrange multipliers for $\epsilon$-Pareto solutions in vector optimization with nonsolid cones in Banach spaces,, J. Optim. Theory Appl., 145 (2010), 196.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[9]

J. B. G. Frenk and G. Kassay, On classes of generalized convex functions, Gordan-Farkas type theorems, and Lagrangian duality,, J. Optim. Theory Appl., 102 (1999), 315.  doi: 10.1023/A:1021780423989.  Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", Springer-Verlag, (2003).   Google Scholar

[11]

D. Gupta and A. Mehra, Two types of approximate saddle points,, Numer. Func. Anal. Optim., 29 (2008), 532.  doi: 10.1080/01630560802099274.  Google Scholar

[12]

C. Gutiérrez, B. Jiménez and V. Novo, A set-valued Ekeland's variational principle in vector optimization,, SIAM J. Control Optim., 47 (2008), 883.  doi: 10.1137/060672868.  Google Scholar

[13]

C. Gutiérrez, R. López and V. Novo, Generalized $\epsilon-$quasi-solutions in multiobjective optimization problems: Existence results and optimality conditions,, Nonlinear Anal., 72 (2010), 4331.  doi: 10.1016/j.na.2010.02.012.  Google Scholar

[14]

C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems,, SIAM J. Optim., 17 (2006), 688.  doi: 10.1137/05062648X.  Google Scholar

[15]

C. Gutiérrez, B. Jiménez and V. Novo, On approximate efficiency in multiobjective programming,, Math. Methods Oper. Res., 64 (2006), 165.  doi: 10.1007/s00186-006-0078-0.  Google Scholar

[16]

C. Gutiérrez, B. Jiménez and V. Novo, Optimality conditions via scalarization for a new $\epsilon$-efficiency concept in vector optimization problems,, European J. Oper. Res., 201 (2010), 11.  doi: 10.1016/j.ejor.2009.02.007.  Google Scholar

[17]

A. M. Geoffrion, Proper efficiency and the theory of vector maximization,, J. Math. Anal. Appl., 22 (1968), 618.  doi: 10.1016/0022-247X(68)90201-1.  Google Scholar

[18]

T. X. D. Ha, The Ekeland variational principle for Henig proper minimizers and super minimizers,, J. Math. Anal. Appl., 364 (2010), 156.  doi: 10.1016/j.jmaa.2009.10.065.  Google Scholar

[19]

S. Helbig, "On a new concept for $\epsilon$-efficency,", A Talk at Optimization Days 1992, (1992).   Google Scholar

[20]

M. I. Henig, Proper efficiency with respect to cones,, J. Optim. Theory Appl., 36 (1982), 387.  doi: 10.1007/BF00934353.  Google Scholar

[21]

J. B. Hiriart-Urruty, New concepts in nondifferentiable programming,, Bull. Soc. Math. France M\'em., 60 (1979), 57.   Google Scholar

[22]

J. B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces,, Math. Oper. Res., 4 (1979), 79.  doi: 10.1287/moor.4.1.79.  Google Scholar

[23]

S. Kutateladze, Convex $\epsilon-$programming,, Soviet Math. Dokl., 20 (1979), 391.   Google Scholar

[24]

H. W. Kuhn and A. W. Tucker, Nonlinear programming,, from, (1951), 481.   Google Scholar

[25]

J. C. Liu, $\epsilon-$properly efficient solutions to nondifferentiable multiobjective programming problems,, Appl. Math. Lett., 12 (1999), 109.  doi: 10.1016/S0893-9659(99)00087-7.  Google Scholar

[26]

Z. Li and S. Wang, $\epsilon$-approximate solutions in multiobjective optimization,, Optimization, 44 (1998), 161.  doi: 10.1080/02331939808844406.  Google Scholar

[27]

C. G. Liu, K. F. Ng and W. H. Yang, Merit functions in vector optimization,, Math. Program., 119 (2009), 215.  doi: 10.1016/j.colsurfa.2009.04.036.  Google Scholar

[28]

A. B. Németh, A nonconvex vector minimization problem,, Nonlinear Anal., 10 (1986), 669.  doi: 10.1016/0362-546X(86)90126-4.  Google Scholar

[29]

W. D. Rong and Y. N. Wu, $\epsilon$-weak minimal solutions of vector optimization problems with set-valued maps,, J. Optim. Theory Appl., 106 (2000), 569.  doi: 10.1023/A:1004657412928.  Google Scholar

[30]

W. D. Rong, $\epsilon-$efficiency in vector optimization problems with cone subconvexlikeness,, Acta Sci. Natur. Univ. NeiMongol., 28 (1997), 609.   Google Scholar

[31]

T. Tanaka, A new approach to approximation of solutions in vector optimization problems,, in, (1995), 497.   Google Scholar

[32]

I. Vályi, Approximate saddle-point theorems in vector optimization,, J. Optim. Theory Appl., 55 (1987), 435.  doi: 10.1007/BF00941179.  Google Scholar

[33]

D. J. White, Epsilon efficiency,, J. Optim. Theory Appl., 49 (1986), 319.  doi: 10.1007/BF00940762.  Google Scholar

[34]

A. Zaffaroni, Degrees of efficiency and degrees of minimality,, SIAM J. Control Optim., 42 (2003), 1071.  doi: 10.1137/S0363012902411532.  Google Scholar

show all references

References:
[1]

E. M. Bednarczuk and M. J. Przybyla, The vector-valued variational principle in Banach spaces ordered by cones with nonempty interiors,, SIAM J. Optim., 18 (2007), 907.  doi: 10.1137/060658989.  Google Scholar

[2]

M. Beldiman, E. Panaitescu and L. Dogaru, Approximate quasi efficient solutions in multiobjective optimization,, Bull. Math. Soc. Sci. Math. Roumanie Tome, 99 (2008), 109.   Google Scholar

[3]

H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones,, J. Math. Anal. Appl., 71 (1979), 232.  doi: 10.1016/0022-247X(79)90226-9.  Google Scholar

[4]

S. Bolintinéanu, Vector variational principles: $\epsilon-$efficiency and scalar stationarity,, J. Convex Anal., 8 (2001), 71.   Google Scholar

[5]

J. Borwein, Proper efficient points for maximizations with respect to cones,, SIAM J. Control Optim., 15 (1977), 57.  doi: 10.1137/0315004.  Google Scholar

[6]

G. Y. Chen, X. X. Huang and X. M. Yang, "Vector Optimization. Set-Valued and Variational Analysis,", Lecture Notes in Econom. and Math. Systems \textbf{541}, 541 (2005).   Google Scholar

[7]

J. Dutta and V. Vetrivel, On approximate minima in vector optimization,, Numer. Func. Anal. Optim., 22 (2001), 845.  doi: 10.1081/NFA-100108312.  Google Scholar

[8]

M. Durea, J. Dutta and C. Tammer, Lagrange multipliers for $\epsilon$-Pareto solutions in vector optimization with nonsolid cones in Banach spaces,, J. Optim. Theory Appl., 145 (2010), 196.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[9]

J. B. G. Frenk and G. Kassay, On classes of generalized convex functions, Gordan-Farkas type theorems, and Lagrangian duality,, J. Optim. Theory Appl., 102 (1999), 315.  doi: 10.1023/A:1021780423989.  Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", Springer-Verlag, (2003).   Google Scholar

[11]

D. Gupta and A. Mehra, Two types of approximate saddle points,, Numer. Func. Anal. Optim., 29 (2008), 532.  doi: 10.1080/01630560802099274.  Google Scholar

[12]

C. Gutiérrez, B. Jiménez and V. Novo, A set-valued Ekeland's variational principle in vector optimization,, SIAM J. Control Optim., 47 (2008), 883.  doi: 10.1137/060672868.  Google Scholar

[13]

C. Gutiérrez, R. López and V. Novo, Generalized $\epsilon-$quasi-solutions in multiobjective optimization problems: Existence results and optimality conditions,, Nonlinear Anal., 72 (2010), 4331.  doi: 10.1016/j.na.2010.02.012.  Google Scholar

[14]

C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems,, SIAM J. Optim., 17 (2006), 688.  doi: 10.1137/05062648X.  Google Scholar

[15]

C. Gutiérrez, B. Jiménez and V. Novo, On approximate efficiency in multiobjective programming,, Math. Methods Oper. Res., 64 (2006), 165.  doi: 10.1007/s00186-006-0078-0.  Google Scholar

[16]

C. Gutiérrez, B. Jiménez and V. Novo, Optimality conditions via scalarization for a new $\epsilon$-efficiency concept in vector optimization problems,, European J. Oper. Res., 201 (2010), 11.  doi: 10.1016/j.ejor.2009.02.007.  Google Scholar

[17]

A. M. Geoffrion, Proper efficiency and the theory of vector maximization,, J. Math. Anal. Appl., 22 (1968), 618.  doi: 10.1016/0022-247X(68)90201-1.  Google Scholar

[18]

T. X. D. Ha, The Ekeland variational principle for Henig proper minimizers and super minimizers,, J. Math. Anal. Appl., 364 (2010), 156.  doi: 10.1016/j.jmaa.2009.10.065.  Google Scholar

[19]

S. Helbig, "On a new concept for $\epsilon$-efficency,", A Talk at Optimization Days 1992, (1992).   Google Scholar

[20]

M. I. Henig, Proper efficiency with respect to cones,, J. Optim. Theory Appl., 36 (1982), 387.  doi: 10.1007/BF00934353.  Google Scholar

[21]

J. B. Hiriart-Urruty, New concepts in nondifferentiable programming,, Bull. Soc. Math. France M\'em., 60 (1979), 57.   Google Scholar

[22]

J. B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces,, Math. Oper. Res., 4 (1979), 79.  doi: 10.1287/moor.4.1.79.  Google Scholar

[23]

S. Kutateladze, Convex $\epsilon-$programming,, Soviet Math. Dokl., 20 (1979), 391.   Google Scholar

[24]

H. W. Kuhn and A. W. Tucker, Nonlinear programming,, from, (1951), 481.   Google Scholar

[25]

J. C. Liu, $\epsilon-$properly efficient solutions to nondifferentiable multiobjective programming problems,, Appl. Math. Lett., 12 (1999), 109.  doi: 10.1016/S0893-9659(99)00087-7.  Google Scholar

[26]

Z. Li and S. Wang, $\epsilon$-approximate solutions in multiobjective optimization,, Optimization, 44 (1998), 161.  doi: 10.1080/02331939808844406.  Google Scholar

[27]

C. G. Liu, K. F. Ng and W. H. Yang, Merit functions in vector optimization,, Math. Program., 119 (2009), 215.  doi: 10.1016/j.colsurfa.2009.04.036.  Google Scholar

[28]

A. B. Németh, A nonconvex vector minimization problem,, Nonlinear Anal., 10 (1986), 669.  doi: 10.1016/0362-546X(86)90126-4.  Google Scholar

[29]

W. D. Rong and Y. N. Wu, $\epsilon$-weak minimal solutions of vector optimization problems with set-valued maps,, J. Optim. Theory Appl., 106 (2000), 569.  doi: 10.1023/A:1004657412928.  Google Scholar

[30]

W. D. Rong, $\epsilon-$efficiency in vector optimization problems with cone subconvexlikeness,, Acta Sci. Natur. Univ. NeiMongol., 28 (1997), 609.   Google Scholar

[31]

T. Tanaka, A new approach to approximation of solutions in vector optimization problems,, in, (1995), 497.   Google Scholar

[32]

I. Vályi, Approximate saddle-point theorems in vector optimization,, J. Optim. Theory Appl., 55 (1987), 435.  doi: 10.1007/BF00941179.  Google Scholar

[33]

D. J. White, Epsilon efficiency,, J. Optim. Theory Appl., 49 (1986), 319.  doi: 10.1007/BF00940762.  Google Scholar

[34]

A. Zaffaroni, Degrees of efficiency and degrees of minimality,, SIAM J. Control Optim., 42 (2003), 1071.  doi: 10.1137/S0363012902411532.  Google Scholar

[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[3]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[4]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[6]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[7]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[8]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[9]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[10]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[11]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[12]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[13]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[14]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[15]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[16]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[17]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[18]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[19]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[20]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (109)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]