Citation: |
[1] |
F. Alvarado, I. Dobson and Y. Hu, Computation of closest bifurcations in power systems, IEEE Trans. Power System, 9 (1994), 918-928.doi: 10.1109/59.317655. |
[2] |
C. A. Cañizares, Calculating optimal system parameters to maximize the distance to saddle-node bifurcation points, IEEE Trans. Circuits and System, 45 (1998), 225-237.doi: 10.1109/81.662696. |
[3] |
X. Chen, H. Qi, L. Qi and K.-L. Teo, Smooth convex approximation to the maximum eigenvalue function, J. of Global Optimization, 30 (2004), 253-270.doi: 10.1007/s10898-004-8271-2. |
[4] |
H. D. Chiang, I. Dobson and R. J. Thomas, On voltage in electric power systems, IEEE Trans. Power Systems, 5 (1990), 601-611.doi: 10.1109/59.54571. |
[5] |
T. Coffey, C. T. Kelley and D. E. Keyes, Pseudo-transient continuation and differential-algebraic equations, SIAM J. Sci. Comp., 25 (2003), 553-569.doi: 10.1137/S106482750241044X. |
[6] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," John Wiley, New York, 1983. |
[7] |
H. Dan, N. Yamashita and M. Fukushima, Convergence Properties of the Inexact Levenberg-Marquardt Method under Local Error Bound Conditions, Optimization Methods and Software, 17 (2002), 605-626.doi: 10.1080/1055678021000049345. |
[8] |
G. Degla, An overview of semi-continuity results on the spectral radius and positivity, J. Math. Anal. Appl., 338 (2008), 101-110.doi: 10.1016/j.jmaa.2007.05.011. |
[9] |
J. E. Dennis and R. B. Schnabel, "Numerical Methods for Unconstrained Optimization and Nonlinear Equations," SIAM, Philadelphia, 1996. |
[10] |
P. Deuflhard, Adaptive pseudo-transient continuation for nonlinear steady state problems, ZIP-Report02-12(March 2002), in "Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms," Springer Series in Computational Mathematics, 35, Springer (2004). |
[11] |
I. Dobson, An iterative method to compute the closest saddle node or Hopf bifurcation in multidimensional parameter space, in "Proceedings of the IEEE International Symposium on Circuits and Systems," San Diego, 1992, 2513-2516. |
[12] |
I. Dobson and L. Lu, Computing an optimum direction in control space to avoid saddle node bifurcation and voltage collapse in electric power systems, IEEE Trans. Automatic Control, 37 (1992), 1616-1620.doi: 10.1109/9.256397. |
[13] |
K. R. Fowler and C. T. Kelley, Pseudo-transient continuation for nonsmooth nonlinear equations, SIAM J. Numer. Anal., 43 (2005), 1385-1406.doi: 10.1137/S0036142903431298. |
[14] |
C. P. Gupta, R. K. Varma and S. C. Srivastava, A method to determine closest Hopf bifurcation in power systems considering exciter and load dynamics, in "Proceedings of 'Energy Management and Power Delivery Conference 1998 (EMPD'98)," Singapore, 1998, 293-297. |
[15] |
M. Hintermüller and M. Hinze, A SQP-semi-smooth Newton-type algorithm applied to control of the instationary Navier-Stokes system subject to control constraints, SIAM J. Optim, 16 (2006), 1177-1200.doi: 10.1137/030601259. |
[16] |
C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations," in "Frontiers in Applied Mathematics, 16," SIAM, Philadelphia, 1995. |
[17] |
C. T. Kelley, "Iterative Methods for Optimization," SIAM, Philadelphia, 1999. |
[18] |
C. T. Kelley, "Solving Nonlinear Equations with Newton's Method," in "Fundamentals of Algorithms, 1," SIAM, Philadelphia, 2003. |
[19] |
C. T. Kelley and D. E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM J. Numer. Anal., 35 (1998), 508-523.doi: 10.1137/S0036142996304796. |
[20] |
C. T. Kelley, Li-Zhi Liao, Liqun Qi, Moody T. Chu, J. P. Reese and C. Winton, Projected Pseudotransient continuation, SIAM J. Numer. Nanl, 46 (2008), 3071-3083.doi: 10.1137/07069866X. |
[21] |
P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. V. Cutsem and V. Vittal, Definition and classification of power system stability, IEEE Transaction on Power Systems, 19 (2004), 1387-1401.doi: 10.1109/TPWRS.2004.825981. |
[22] |
A. S. Lewis, Nonsmooth analysis of eigenvalues, Math. Program., 84 (1999), 1-24. |
[23] |
A. S. Lewis and M. Overton, "Eigenvalue Optimization," Acta Numerica, 5 (1996), 149-190.doi: 10.1017/S0962492900002646. |
[24] |
Y. Ma, H. Kawakami and C. K. Tse, Bifurcation analysis of switched dynamical systems with periodically moving borders, IEEE Transactions on Circuits and Systems, 51 (2004), 1184-1193.doi: 10.1109/TCSI.2004.829240. |
[25] |
Y. V. Makarov, Z. Y. Dong and D. J. Hill, A general method for small signal stability analysis, IEEE Transaction on Power Systems, 13 (1998), 979-985.doi: 10.1109/59.709086. |
[26] |
R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim., 15 (1977), 957-972doi: 10.1137/0315061. |
[27] |
J. M. Ortega and W. C. Rheinboldt, "Iterative Solutions of Nonlinear Equations in Several Variables," Academic Press, New York, 1970. |
[28] |
F. Oustry, A second-order bundle method to minimize the maximum eigenvalue function, Math. Program, 89 (2000), 1-33.doi: 10.1007/PL00011388. |
[29] |
J. S. Pang, D. F. Sun and J. Sun, Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Cone Complementarity Problems, Math. Oper. Res., 28 (2003), 39-63.doi: 10.1287/moor.28.1.39.14258. |
[30] |
H. Qi and L. Liao, A smoothing Newton method for extended vertical linear complementarity problems, SIAM J. Matrix Anal. Appl., 21 (1999), 45-66.doi: 10.1137/S0895479897329837. |
[31] |
H. Qi and D. Sun, A quadratically convergent Newton method for computing the nearest correlation matrix, SIAM J. Matrix Anal. Appl., 28 (2006), 360-385.doi: 10.1137/050624509. |
[32] |
H. Qi and X. Yang, Semismoothness of spectral functions, SIAM J. Matrix Anal. Appl., 25 (2004), 766-783.doi: 10.1137/S0895479802417921. |
[33] |
L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper. Res., 18 (1993), 227-244.doi: 10.1287/moor.18.1.227. |
[34] |
L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities, Math. Program., 87 (2000), 1-35. |
[35] |
L. Qi and J. Sun, A nonsmooth version of Newton's method, Math. Program., 58 (1993), 353-367.doi: 10.1007/BF01581275. |
[36] |
D. Sun and J. Sun, Semismooth matrix valued functions, Math. Oper. Res., 27 (2002), 150-169.doi: 10.1287/moor.27.1.150.342. |
[37] |
D. Sun and J. Sun, Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems, SIAM J. Numer Anal., 40 (2002), 2352-2367.doi: 10.1137/S0036142901393814. |
[38] |
M. D. Smooke and R. M. Mattheij, On the solution of nonlinear two-point boundary value problem on successively refined grids, Appl. Numer. Math., 1 (1985), 463-487.doi: i:10.1016/0168-9274(85)90032-7. |
[39] |
A. Shestakov and J. Milovich, "Applications of Pseudo-Transient Continuation and Newton-Krylov Methods of the Poisson-Boltzmann and Radiation Diffusion Equation," Tech. report UCRL-JC-139339, Lawrence Livermore National Laboratory, Livermore, CA, 2000. |
[40] |
X. J. Tong and S. Zhou, A smoothing projected Newton-type method for semismooth equations with bound constraints, Journal of Industrial Management Optimization, 1 (2005), 235-250. |
[41] |
V. Venkatasubramanian, H. Schattler and J. Zaborsky, Dynamics of large constrained nonlinear systems - a taxonomy theory, Proc. IEEE, 83 (1995), 1530-1561.doi: 10.1109/5.481633. |
[42] |
M. Ulbrich, Semismooth Newton Methods for operator equations in function spaces, SIAM J. Optim., 13 (2002), 805-842.doi: 10.1137/S1052623400371569. |
[43] |
X. Wu, C. K. Tse, O. Dranga and J. Lu, Fast-scale instability of single-stage power-factor-correction of power supplies, IEEE Transactions on Circuits and Systems, 53 (2006), 204-213.doi: 10.1109/TCSI.2005.854293. |