July  2011, 7(3): 523-529. doi: 10.3934/jimo.2011.7.523

On symmetric and self duality in vector optimization problem

1. 

Department of Mathematics, Chongqing Normal University, Chongqing 400047

Received  June 2010 Revised  March 2011 Published  June 2011

In this paper, we point out some errors in a recent paper of M.A.E.H.Kassen (Applied Mathematics and Computation 183(2006) 1121-1126). And a pair of the first-order symmetric dual model for vector optimization problem is proposed in this paper. Then, we prove the weak, strong and converse duality theorems for the formulated first-order symmetric dual programs under invexity conditions.
Citation: Xinmin Yang. On symmetric and self duality in vector optimization problem. Journal of Industrial & Management Optimization, 2011, 7 (3) : 523-529. doi: 10.3934/jimo.2011.7.523
References:
[1]

B. D. Craven, Lagrangian conditions and quasiduality,, Bull. Austral. Math. Soc., 16 (1977), 325.  doi: 10.1017/S0004972700023431.  Google Scholar

[2]

G. B. Dantzig, E. Eisenberg and R. W. Cottle, Symmetric dual nonlinear programs,, Pacific J. Math., 15 (1965), 809.   Google Scholar

[3]

W. S. Dorn, A symmetric dual theorem for quadratic programs,, J. Oper. Res. Soc. Japan, 2 (1960), 93.   Google Scholar

[4]

M. A. E.-H. Kassem, Symmetric and self duality in vector optimization problem,, Applied Mathematics and Computation, 183 (2006), 1121.  doi: 10.1016/j.amc.2006.05.131.  Google Scholar

[5]

Z. A. Khan and M. A. Hanson, On ratio invexity in mathematical programming,, J. Math. Anal. Appl., 205 (1997), 330.  doi: 10.1006/jmaa.1997.5180.  Google Scholar

[6]

D. S. Kim, Y. B. Yun and H. Kuk, Second-order symmetric and self-duality in multiobjective programming,, Applied Mathematical Letters, 10 (1997), 17.  doi: 10.1016/S0893-9659(97)00004-9.  Google Scholar

[7]

B. Mond, A symmetric dual theorem for nonlinear programs,, Quart. Appl. Math., 23 (1965), 265.   Google Scholar

[8]

B. Mond and T. Weir, Symmetric duality for nonlinear multiobjective programming,, in, (1991), 137.   Google Scholar

[9]

T. Weir and B. Mond, Symmetric and self duality in multiple objective programming,, Asia-Pacific J. Oper. Res., 5 (1988), 124.   Google Scholar

[10]

X.-M. Yang and S.-H. Hou, Second-order symmetric duality in multiobjective programming,, Applied Mathematical Letters, 14 (2001), 587.  doi: 10.1016/S0893-9659(00)00198-1.  Google Scholar

show all references

References:
[1]

B. D. Craven, Lagrangian conditions and quasiduality,, Bull. Austral. Math. Soc., 16 (1977), 325.  doi: 10.1017/S0004972700023431.  Google Scholar

[2]

G. B. Dantzig, E. Eisenberg and R. W. Cottle, Symmetric dual nonlinear programs,, Pacific J. Math., 15 (1965), 809.   Google Scholar

[3]

W. S. Dorn, A symmetric dual theorem for quadratic programs,, J. Oper. Res. Soc. Japan, 2 (1960), 93.   Google Scholar

[4]

M. A. E.-H. Kassem, Symmetric and self duality in vector optimization problem,, Applied Mathematics and Computation, 183 (2006), 1121.  doi: 10.1016/j.amc.2006.05.131.  Google Scholar

[5]

Z. A. Khan and M. A. Hanson, On ratio invexity in mathematical programming,, J. Math. Anal. Appl., 205 (1997), 330.  doi: 10.1006/jmaa.1997.5180.  Google Scholar

[6]

D. S. Kim, Y. B. Yun and H. Kuk, Second-order symmetric and self-duality in multiobjective programming,, Applied Mathematical Letters, 10 (1997), 17.  doi: 10.1016/S0893-9659(97)00004-9.  Google Scholar

[7]

B. Mond, A symmetric dual theorem for nonlinear programs,, Quart. Appl. Math., 23 (1965), 265.   Google Scholar

[8]

B. Mond and T. Weir, Symmetric duality for nonlinear multiobjective programming,, in, (1991), 137.   Google Scholar

[9]

T. Weir and B. Mond, Symmetric and self duality in multiple objective programming,, Asia-Pacific J. Oper. Res., 5 (1988), 124.   Google Scholar

[10]

X.-M. Yang and S.-H. Hou, Second-order symmetric duality in multiobjective programming,, Applied Mathematical Letters, 14 (2001), 587.  doi: 10.1016/S0893-9659(00)00198-1.  Google Scholar

[1]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[2]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[3]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[4]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[5]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[6]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[7]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[12]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[13]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[14]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[15]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[16]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[17]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[18]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[19]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[20]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]