July  2011, 7(3): 531-558. doi: 10.3934/jimo.2011.7.531

Developing a new data envelopment analysis model for customer value analysis

1. 

Department of Industrial Management, Faculty of Management and Accounting, Islamic Azad University-Karaj Branch, P. O. Box: 31485-313, Karaj, Iran, Iran, Iran

Received  March 2010 Revised  March 2011 Published  June 2011

This paper proposes an application of data envelopment analysis (DEA) to measure the value of customers. In order to distinguish between expectations and needs of profitable and unprofitable customers and to allocate marketing investments among them, customers are compared with each other and ranked in a customer value pyramid. To this end, we use a combination of the Banker, Charnes and Cooper (BCC) model [3], assurance region (AR) model, and cross-efficiency evaluation. A numerical example demonstrates the application of the proposed model in an Iranian manufacturing company.
Citation: Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial & Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531
References:
[1]

D. A. Aaker, V. Kumar and G. S. Day, "Marketing Research,", John Wiley & Sons, (2001).   Google Scholar

[2]

J. Anderson and J. Narus, "Business Market Management: Understanding, Creating and Developing Value,", 2nd edition, (2004).   Google Scholar

[3]

R. D. Banker, A. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis,, Management Science, 30 (1984), 1078.  doi: 10.1287/mnsc.30.9.1078.  Google Scholar

[4]

D. Bowman and D. Narayandas, Managing customer-initiated contacts with manufacturers: The impact on share of category requirements and word-of mouth behavior,, Journal of Marketing Research, 38 (2001), 281.  doi: 10.1509/jmkr.38.3.281.18863.  Google Scholar

[5]

A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units,, European Journal of Operational Research, 2 (1978), 429.  doi: 10.1016/0377-2217(78)90138-8.  Google Scholar

[6]

M. T. Chu, J. Z. Shyu and R. Khosla, Measuring the relative performance for leading fables firms by using data envelopment analysis,, Journal of Intelligent Manufacturing, 19 (2008), 257.  doi: 10.1007/s10845-008-0079-3.  Google Scholar

[7]

R. Colombo and W. Jiang, A stochastic RFM model,, Journal of Interactive Marketing, 13 (1999), 2.  doi: 10.1002/(SICI)1520-6653(199922)13:3<2::AID-DIR1>3.0.CO;2-H.  Google Scholar

[8]

W. W. Cooper, L. M. Seiford and K. Tone, "Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software,", 2nd edition, (2007).   Google Scholar

[9]

J. Deichmann, A. Eshghi, D. Haughton, S. Sayek and N. Teebagy, Application of Multiple Adaptive Regression Splines (MARS) in direct response modeling,, Journal of Interactive Marketing, 16 (2002), 15.  doi: 10.1002/dir.10040.  Google Scholar

[10]

J. Doyle and R. Green, Efficiency and cross efficiency in DEA: Derivations, meanings and the uses,, Journal of the Operational Research Society, 45 (1994), 567.   Google Scholar

[11]

P. Fader, B. Hardie and K. L. Lee, RFM and CLV: Using Iso-value curves for customer base analysis,, Journal of Marketing Research, 42 (2005), 415.  doi: 10.1509/jmkr.2005.42.4.415.  Google Scholar

[12]

R. Garland, Segmenting retail banking customers,, Journal of Financial Services Marketing, 10 (2005), 179.  doi: 10.1057/palgrave.fsm.4770184.  Google Scholar

[13]

F. Grönöl and M. Shi, Optimal mailing of catalogs: A new methodology using estimable structural dynamic programming models,, Management Science, 44 (1998), 1249.  doi: 10.1287/mnsc.44.9.1249.  Google Scholar

[14]

C. Grönroos, From marketing mix to relationship marketing: Towards a paradigm shift in marketing,, Management Decision, 32 (1994), 4.  doi: 10.1108/00251749410054774.  Google Scholar

[15]

K. Ha, S. Cho and D. Maclachlan, Response models based on bagging neural networks,, Journal of Interactive Marketing, 19 (2005), 17.  doi: 10.1002/dir.20028.  Google Scholar

[16]

L. K. Hansen and P. R. Salamon, Neural network ensembles,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 993.  doi: 10.1109/34.58871.  Google Scholar

[17]

Z. Huanga, H. Chena, C. J. Hsua, W. H. Chenb and S. Wu, Credit rating analysis with support vector machines and neural networks: A market comparative study,, Decision Support Systems, 37 (2004), 543.  doi: 10.1016/S0167-9236(03)00086-1.  Google Scholar

[18]

Y. Kim, W. N. Street, G. J. Russell and F. Menczer, Customer targeting: A neural network approach guided by genetic algorithms,, Management Science, 51 (2005), 264.  doi: 10.1287/mnsc.1040.0296.  Google Scholar

[19]

P. J. Korhonen and M. Luptacik, Eco-efficiency analysis of power plants: An extension of data envelopment analysis,, European Journal of Operational Research, 154 (2004), 437.  doi: 10.1016/S0377-2217(03)00180-2.  Google Scholar

[20]

J. Liu, F. Y. Ding and V. Lall, Using data envelopment analysis to compare suppliers for supplier selection and performance improvement,, Supply Chain Management: An International Journal, 5 (2000), 143.   Google Scholar

[21]

L. Moutinho, B. Curry, F. Davies and P. Rita, "Neural Network in Marketing,", Routledge, (1994).   Google Scholar

[22]

P. E. Pfeifer, The optimal ratio of acquisition and retention costs,, Journal of Targeting, 13 (2005), 179.  doi: 10.1057/palgrave.jt.5740142.  Google Scholar

[23]

D. Pitta, F. Franzak and D. Fowler, A strategic approach to building online customer loyalty: Integrating customer profitability tiers,, Journal of Consumer Marketing, 23 (2006), 421.  doi: 10.1108/07363760610712966.  Google Scholar

[24]

C. K. Prahalad, "The Fortune at the Bottom of the Pyramid: Eradicating Poverty through Profits,", Wharton School Publishing, (2004).   Google Scholar

[25]

W. Reinartz and V. Kumar, The mismanagement of customer loyalty,, Harvard Business Review, (2002), 86.   Google Scholar

[26]

T. L. Saaty, "Multicriteria Decision Making: The Analytic Hierarchy Process,", 1988, (1980).   Google Scholar

[27]

L. M. Seiford and J. Zhu, Identifying excesses and deficits in Chinese industrial productivity (1953-1990): A weighted data envelopment analysis approach,, Omega, 26 (1998), 279.  doi: 10.1016/S0305-0483(98)00011-5.  Google Scholar

[28]

L. M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation,, European Journal of Operational Research, 142 (2002), 16.  doi: 10.1016/S0377-2217(01)00293-4.  Google Scholar

[29]

T. R. Sexton, R. H. Silkman and A. J. Hogan, Data envelopment analysis: Critique and extensions,, in, (1986), 73.   Google Scholar

[30]

R. Shabahang, "Financial Accounting,", Iranian Auditing Organization, (2003).   Google Scholar

[31]

T. Sueyoshi, J. Shang and W. C. Chiang, A decision support framework for internal audit prioritization in a rental car company: A combined use between DEA and AHP,, European Journal of Operational Research, 199 (2009), 219.  doi: 10.1016/j.ejor.2008.11.010.  Google Scholar

[32]

R. G. Thompson, F. D. Singleton, J. R. M. Thrall and B. A. Smith, Comparative site evaluations for locating a high-energy physics lab in Texas,, Interfaces, 16 (1986), 35.  doi: 10.1287/inte.16.6.35.  Google Scholar

[33]

E. M. Van Raaij, The strategic value of customer profitability analysis,, Marketing Intelligence & Planning, 23 (2005), 372.  doi: 10.1108/02634500510603474.  Google Scholar

[34]

Y.-M. Wang, Y. Luo and L. Liang, Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis,, Journal of Computational and Applied Mathematics, 223 (2009), 469.  doi: 10.1016/j.cam.2008.01.022.  Google Scholar

[35]

W. P. Wong and K. Y. Wong, A review on benchmarking of supply chain performance measures,, Benchmarking: An International Journal, 15 (2008), 25.   Google Scholar

[36]

Y. P. Yu, and S. Q. Cai, A new approach to customer targeting under condition of information shortage,, Marketing Intelligence & Planning, 25 (2007), 343.  doi: 10.1108/02634500710754583.  Google Scholar

[37]

V. A. Zeithaml, R. T. Rust and K. N. Lemon, The customer pyramid: Creating and serving profitable customers,, California Management Review, 43 (2001), 118.   Google Scholar

[38]

J. Zhu and W. D. Cook, "Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis,", A Problem-Solving Handbook, (2007).   Google Scholar

show all references

References:
[1]

D. A. Aaker, V. Kumar and G. S. Day, "Marketing Research,", John Wiley & Sons, (2001).   Google Scholar

[2]

J. Anderson and J. Narus, "Business Market Management: Understanding, Creating and Developing Value,", 2nd edition, (2004).   Google Scholar

[3]

R. D. Banker, A. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis,, Management Science, 30 (1984), 1078.  doi: 10.1287/mnsc.30.9.1078.  Google Scholar

[4]

D. Bowman and D. Narayandas, Managing customer-initiated contacts with manufacturers: The impact on share of category requirements and word-of mouth behavior,, Journal of Marketing Research, 38 (2001), 281.  doi: 10.1509/jmkr.38.3.281.18863.  Google Scholar

[5]

A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units,, European Journal of Operational Research, 2 (1978), 429.  doi: 10.1016/0377-2217(78)90138-8.  Google Scholar

[6]

M. T. Chu, J. Z. Shyu and R. Khosla, Measuring the relative performance for leading fables firms by using data envelopment analysis,, Journal of Intelligent Manufacturing, 19 (2008), 257.  doi: 10.1007/s10845-008-0079-3.  Google Scholar

[7]

R. Colombo and W. Jiang, A stochastic RFM model,, Journal of Interactive Marketing, 13 (1999), 2.  doi: 10.1002/(SICI)1520-6653(199922)13:3<2::AID-DIR1>3.0.CO;2-H.  Google Scholar

[8]

W. W. Cooper, L. M. Seiford and K. Tone, "Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software,", 2nd edition, (2007).   Google Scholar

[9]

J. Deichmann, A. Eshghi, D. Haughton, S. Sayek and N. Teebagy, Application of Multiple Adaptive Regression Splines (MARS) in direct response modeling,, Journal of Interactive Marketing, 16 (2002), 15.  doi: 10.1002/dir.10040.  Google Scholar

[10]

J. Doyle and R. Green, Efficiency and cross efficiency in DEA: Derivations, meanings and the uses,, Journal of the Operational Research Society, 45 (1994), 567.   Google Scholar

[11]

P. Fader, B. Hardie and K. L. Lee, RFM and CLV: Using Iso-value curves for customer base analysis,, Journal of Marketing Research, 42 (2005), 415.  doi: 10.1509/jmkr.2005.42.4.415.  Google Scholar

[12]

R. Garland, Segmenting retail banking customers,, Journal of Financial Services Marketing, 10 (2005), 179.  doi: 10.1057/palgrave.fsm.4770184.  Google Scholar

[13]

F. Grönöl and M. Shi, Optimal mailing of catalogs: A new methodology using estimable structural dynamic programming models,, Management Science, 44 (1998), 1249.  doi: 10.1287/mnsc.44.9.1249.  Google Scholar

[14]

C. Grönroos, From marketing mix to relationship marketing: Towards a paradigm shift in marketing,, Management Decision, 32 (1994), 4.  doi: 10.1108/00251749410054774.  Google Scholar

[15]

K. Ha, S. Cho and D. Maclachlan, Response models based on bagging neural networks,, Journal of Interactive Marketing, 19 (2005), 17.  doi: 10.1002/dir.20028.  Google Scholar

[16]

L. K. Hansen and P. R. Salamon, Neural network ensembles,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 993.  doi: 10.1109/34.58871.  Google Scholar

[17]

Z. Huanga, H. Chena, C. J. Hsua, W. H. Chenb and S. Wu, Credit rating analysis with support vector machines and neural networks: A market comparative study,, Decision Support Systems, 37 (2004), 543.  doi: 10.1016/S0167-9236(03)00086-1.  Google Scholar

[18]

Y. Kim, W. N. Street, G. J. Russell and F. Menczer, Customer targeting: A neural network approach guided by genetic algorithms,, Management Science, 51 (2005), 264.  doi: 10.1287/mnsc.1040.0296.  Google Scholar

[19]

P. J. Korhonen and M. Luptacik, Eco-efficiency analysis of power plants: An extension of data envelopment analysis,, European Journal of Operational Research, 154 (2004), 437.  doi: 10.1016/S0377-2217(03)00180-2.  Google Scholar

[20]

J. Liu, F. Y. Ding and V. Lall, Using data envelopment analysis to compare suppliers for supplier selection and performance improvement,, Supply Chain Management: An International Journal, 5 (2000), 143.   Google Scholar

[21]

L. Moutinho, B. Curry, F. Davies and P. Rita, "Neural Network in Marketing,", Routledge, (1994).   Google Scholar

[22]

P. E. Pfeifer, The optimal ratio of acquisition and retention costs,, Journal of Targeting, 13 (2005), 179.  doi: 10.1057/palgrave.jt.5740142.  Google Scholar

[23]

D. Pitta, F. Franzak and D. Fowler, A strategic approach to building online customer loyalty: Integrating customer profitability tiers,, Journal of Consumer Marketing, 23 (2006), 421.  doi: 10.1108/07363760610712966.  Google Scholar

[24]

C. K. Prahalad, "The Fortune at the Bottom of the Pyramid: Eradicating Poverty through Profits,", Wharton School Publishing, (2004).   Google Scholar

[25]

W. Reinartz and V. Kumar, The mismanagement of customer loyalty,, Harvard Business Review, (2002), 86.   Google Scholar

[26]

T. L. Saaty, "Multicriteria Decision Making: The Analytic Hierarchy Process,", 1988, (1980).   Google Scholar

[27]

L. M. Seiford and J. Zhu, Identifying excesses and deficits in Chinese industrial productivity (1953-1990): A weighted data envelopment analysis approach,, Omega, 26 (1998), 279.  doi: 10.1016/S0305-0483(98)00011-5.  Google Scholar

[28]

L. M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation,, European Journal of Operational Research, 142 (2002), 16.  doi: 10.1016/S0377-2217(01)00293-4.  Google Scholar

[29]

T. R. Sexton, R. H. Silkman and A. J. Hogan, Data envelopment analysis: Critique and extensions,, in, (1986), 73.   Google Scholar

[30]

R. Shabahang, "Financial Accounting,", Iranian Auditing Organization, (2003).   Google Scholar

[31]

T. Sueyoshi, J. Shang and W. C. Chiang, A decision support framework for internal audit prioritization in a rental car company: A combined use between DEA and AHP,, European Journal of Operational Research, 199 (2009), 219.  doi: 10.1016/j.ejor.2008.11.010.  Google Scholar

[32]

R. G. Thompson, F. D. Singleton, J. R. M. Thrall and B. A. Smith, Comparative site evaluations for locating a high-energy physics lab in Texas,, Interfaces, 16 (1986), 35.  doi: 10.1287/inte.16.6.35.  Google Scholar

[33]

E. M. Van Raaij, The strategic value of customer profitability analysis,, Marketing Intelligence & Planning, 23 (2005), 372.  doi: 10.1108/02634500510603474.  Google Scholar

[34]

Y.-M. Wang, Y. Luo and L. Liang, Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis,, Journal of Computational and Applied Mathematics, 223 (2009), 469.  doi: 10.1016/j.cam.2008.01.022.  Google Scholar

[35]

W. P. Wong and K. Y. Wong, A review on benchmarking of supply chain performance measures,, Benchmarking: An International Journal, 15 (2008), 25.   Google Scholar

[36]

Y. P. Yu, and S. Q. Cai, A new approach to customer targeting under condition of information shortage,, Marketing Intelligence & Planning, 25 (2007), 343.  doi: 10.1108/02634500710754583.  Google Scholar

[37]

V. A. Zeithaml, R. T. Rust and K. N. Lemon, The customer pyramid: Creating and serving profitable customers,, California Management Review, 43 (2001), 118.   Google Scholar

[38]

J. Zhu and W. D. Cook, "Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis,", A Problem-Solving Handbook, (2007).   Google Scholar

[1]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[2]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[3]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[4]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[5]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[6]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[7]

Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[10]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[11]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[12]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[13]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[14]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[15]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[16]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[17]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[18]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[19]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[20]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (11)

[Back to Top]