• Previous Article
    Analysis of globally gated Markovian limited cyclic polling model and its application to uplink traffic in the IEEE 802.16 network
  • JIMO Home
  • This Issue
  • Next Article
    Performance analysis of a Geom/Geom/1 queueing system with variable input probability
July  2011, 7(3): 655-676. doi: 10.3934/jimo.2011.7.655

Analysis of the finite source retrial queues with server breakdowns and repairs

1. 

Department of Mathematics, Beijing Jiaotong University, 100044 Beijing, China, China, China

Received  September 2010 Revised  May 2011 Published  June 2011

This paper is concerned with the queueing analysis as well as reliability evaluation of an $M/G/1//K$ retrial queue with a finite number of sources in which the server is subject to breakdowns and repairs. The server has a exponentially distributed life time and a generally distributed repair time. Our analysis extends previous work on this topic and includes the analysis of the arriving customer's distribution, the busy period, the waiting time process and main reliability characteristics. This queueing system and its variants could be used to model magnetic disk memory systems, star-like local area networks and other communication systems with detected or undetected breakdowns.
Citation: Jinting Wang, Linfei Zhao, Feng Zhang. Analysis of the finite source retrial queues with server breakdowns and repairs. Journal of Industrial & Management Optimization, 2011, 7 (3) : 655-676. doi: 10.3934/jimo.2011.7.655
References:
[1]

A. Aissani, A retrial queue with redundancy and unreliable server,, Queueing Systems, 17 (1995), 443.   Google Scholar

[2]

B. Almási, J. Roszik and J. Sztrik, Homogeneous finite-source retrial queues with server subject to breakdowns and repairs,, Mathematical and Computer Modelling, 42 (2005), 673.  doi: 10.1016/j.mcm.2004.02.046.  Google Scholar

[3]

J. R. Artalejo, New results in retrial queueing systems with breakdown of the servers,, Statistica Neerlandica, 48 (1994), 23.  doi: 10.1111/j.1467-9574.1994.tb01429.x.  Google Scholar

[4]

J. R. Artalejo, Retrial queue with a finite number of sources,, J. Korean Math, 35 (1998), 503.   Google Scholar

[5]

J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999,, Top, 7 (1999), 187.  doi: 10.1007/BF02564721.  Google Scholar

[6]

J. R. Artalejo and A. Gómez-Corral, Modelling communication systems with phase type service and retrial times,, IEEE Communications Letters, 11 (2007), 955.  doi: 10.1109/LCOMM.2007.070742.  Google Scholar

[7]

J. R. Artalejo and M. J. Lopez-Herrero, A simulation study of a discrete-time multiserver retrial queue with finite population,, Journal of Statistical Planning and Inference, 137 (2007), 2536.  doi: 10.1016/j.jspi.2006.04.018.  Google Scholar

[8]

J. R. Artalejo and A. Gómez-Corral, "Retrial Queueing Systems. A Computational Approach,", Springer-Verlag, (2008).  doi: 10.1007/978-3-540-78725-9.  Google Scholar

[9]

I. Atencia, I. Fortes, P. Moreno and S. Sánchez, An $M$/$G$/$1$ retrial queue with active breakdowns and Bernoulli schedule in the server,, International Journal of Information and Management Sciences, 17 (2006), 1.   Google Scholar

[10]

V. G. Kulkarni and B. D. Choi, Retrial queues with server subject to breakdowns and repairs,, Queueing Systems Theory Appl., 7 (1990), 191.  doi: 10.1007/BF01158474.  Google Scholar

[11]

G. I. Falin and J. R. Artalejo, A finite source retrial queue,, European Journal of Operational Research, 108 (1998), 409.  doi: 10.1016/S0377-2217(97)00170-7.  Google Scholar

[12]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997).   Google Scholar

[13]

G. K. Janssens, The quasi-random input queueing system with repeated attempts as a model for collision-avoidance star local area network,, IEEE Transactions on Communications, 45 (1997), 360.  doi: 10.1109/26.558699.  Google Scholar

[14]

N. Gharbi and M. Ioualalen, GSPN analysis of retrial systems with servers breakdowns and repairs,, Applied Mathematics and Computation, 174 (2006), 1151.  doi: 10.1016/j.amc.2005.06.005.  Google Scholar

[15]

D. J. Houck and W. S. Lai, Traffic modeling and analysis of hybrid fiber-coax systems,, Computer Networks and ISDN Systems, 30 (1998), 821.  doi: 10.1016/S0169-7552(97)00126-8.  Google Scholar

[16]

H. Li and T. Yang, A single-server retrial queue with server vacations and a finite number of input sources,, European Journal of Operational Research, 85 (1995), 149.  doi: 10.1016/0377-2217(94)E0358-I.  Google Scholar

[17]

H. Ohmura and Y. Takahashi, An analysis of repeated call model with a finite number of sources,, Electronics and Communications in Japan, 68 (1985), 112.  doi: 10.1002/ecja.4410680613.  Google Scholar

[18]

J. Sztrik, B. Almási and J. Roszik, Heterogeneous finite-source retrial queues with server subject to breakdowns and repairs,, Journal of Mathematical Sciences, 132 (2006), 677.  doi: 10.1007/s10958-006-0014-0.  Google Scholar

[19]

P. Tran-Gia and M. Mandjes, Modeling of customer retrial phenomenon in cellular mobile networks,, IEEE Journal on Selected Areas in Communications, 15 (1997), 1406.  doi: 10.1109/49.634781.  Google Scholar

[20]

J. Wang, Reliability analysis of $M$/$G$/$1$ queues with general retrial times and server breakdowns,, Progress in Natural Science (English Ed.), 16 (2006), 464.   Google Scholar

[21]

J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns and repairs,, Queueing Systems, 38 (2001), 363.  doi: 10.1023/A:1010918926884.  Google Scholar

[22]

J. Wang, B. Liu and J. Li, Transient analysis of an $M$/$G$/$1$ retrial queue subject to disasters and server failures,, European Journal of Operational Research, 189 (2008), 1118.  doi: 10.1016/j.ejor.2007.04.054.  Google Scholar

[23]

T. Yang and H. Li, The $M$/$G$/$1$ retrial queue with the server subject to starting failure,, Queueing Systems Theory Appl., 16 (1994), 83.  doi: 10.1007/BF01158950.  Google Scholar

show all references

References:
[1]

A. Aissani, A retrial queue with redundancy and unreliable server,, Queueing Systems, 17 (1995), 443.   Google Scholar

[2]

B. Almási, J. Roszik and J. Sztrik, Homogeneous finite-source retrial queues with server subject to breakdowns and repairs,, Mathematical and Computer Modelling, 42 (2005), 673.  doi: 10.1016/j.mcm.2004.02.046.  Google Scholar

[3]

J. R. Artalejo, New results in retrial queueing systems with breakdown of the servers,, Statistica Neerlandica, 48 (1994), 23.  doi: 10.1111/j.1467-9574.1994.tb01429.x.  Google Scholar

[4]

J. R. Artalejo, Retrial queue with a finite number of sources,, J. Korean Math, 35 (1998), 503.   Google Scholar

[5]

J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999,, Top, 7 (1999), 187.  doi: 10.1007/BF02564721.  Google Scholar

[6]

J. R. Artalejo and A. Gómez-Corral, Modelling communication systems with phase type service and retrial times,, IEEE Communications Letters, 11 (2007), 955.  doi: 10.1109/LCOMM.2007.070742.  Google Scholar

[7]

J. R. Artalejo and M. J. Lopez-Herrero, A simulation study of a discrete-time multiserver retrial queue with finite population,, Journal of Statistical Planning and Inference, 137 (2007), 2536.  doi: 10.1016/j.jspi.2006.04.018.  Google Scholar

[8]

J. R. Artalejo and A. Gómez-Corral, "Retrial Queueing Systems. A Computational Approach,", Springer-Verlag, (2008).  doi: 10.1007/978-3-540-78725-9.  Google Scholar

[9]

I. Atencia, I. Fortes, P. Moreno and S. Sánchez, An $M$/$G$/$1$ retrial queue with active breakdowns and Bernoulli schedule in the server,, International Journal of Information and Management Sciences, 17 (2006), 1.   Google Scholar

[10]

V. G. Kulkarni and B. D. Choi, Retrial queues with server subject to breakdowns and repairs,, Queueing Systems Theory Appl., 7 (1990), 191.  doi: 10.1007/BF01158474.  Google Scholar

[11]

G. I. Falin and J. R. Artalejo, A finite source retrial queue,, European Journal of Operational Research, 108 (1998), 409.  doi: 10.1016/S0377-2217(97)00170-7.  Google Scholar

[12]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997).   Google Scholar

[13]

G. K. Janssens, The quasi-random input queueing system with repeated attempts as a model for collision-avoidance star local area network,, IEEE Transactions on Communications, 45 (1997), 360.  doi: 10.1109/26.558699.  Google Scholar

[14]

N. Gharbi and M. Ioualalen, GSPN analysis of retrial systems with servers breakdowns and repairs,, Applied Mathematics and Computation, 174 (2006), 1151.  doi: 10.1016/j.amc.2005.06.005.  Google Scholar

[15]

D. J. Houck and W. S. Lai, Traffic modeling and analysis of hybrid fiber-coax systems,, Computer Networks and ISDN Systems, 30 (1998), 821.  doi: 10.1016/S0169-7552(97)00126-8.  Google Scholar

[16]

H. Li and T. Yang, A single-server retrial queue with server vacations and a finite number of input sources,, European Journal of Operational Research, 85 (1995), 149.  doi: 10.1016/0377-2217(94)E0358-I.  Google Scholar

[17]

H. Ohmura and Y. Takahashi, An analysis of repeated call model with a finite number of sources,, Electronics and Communications in Japan, 68 (1985), 112.  doi: 10.1002/ecja.4410680613.  Google Scholar

[18]

J. Sztrik, B. Almási and J. Roszik, Heterogeneous finite-source retrial queues with server subject to breakdowns and repairs,, Journal of Mathematical Sciences, 132 (2006), 677.  doi: 10.1007/s10958-006-0014-0.  Google Scholar

[19]

P. Tran-Gia and M. Mandjes, Modeling of customer retrial phenomenon in cellular mobile networks,, IEEE Journal on Selected Areas in Communications, 15 (1997), 1406.  doi: 10.1109/49.634781.  Google Scholar

[20]

J. Wang, Reliability analysis of $M$/$G$/$1$ queues with general retrial times and server breakdowns,, Progress in Natural Science (English Ed.), 16 (2006), 464.   Google Scholar

[21]

J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns and repairs,, Queueing Systems, 38 (2001), 363.  doi: 10.1023/A:1010918926884.  Google Scholar

[22]

J. Wang, B. Liu and J. Li, Transient analysis of an $M$/$G$/$1$ retrial queue subject to disasters and server failures,, European Journal of Operational Research, 189 (2008), 1118.  doi: 10.1016/j.ejor.2007.04.054.  Google Scholar

[23]

T. Yang and H. Li, The $M$/$G$/$1$ retrial queue with the server subject to starting failure,, Queueing Systems Theory Appl., 16 (1994), 83.  doi: 10.1007/BF01158950.  Google Scholar

[1]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[2]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[3]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[4]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[5]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[6]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[7]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[8]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[9]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[10]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[11]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[12]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[13]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[14]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[15]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (26)

Other articles
by authors

[Back to Top]