\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global optimality conditions for some classes of polynomial integer programming problems

Abstract Related Papers Cited by
  • In this paper, some verifiable necessary global optimality conditions and sufficient global optimality conditions for some classes of polynomial integer programming problems are established. The relationships between these necessary global optimality conditions and these sufficient global optimality conditions are also discussed. The main theoretical tool for establishing these optimality conditions is abstract convexity.
    Mathematics Subject Classification: Primary: 90C10, 90C46, 90C26; Secondary: 26C05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Baptiste and H. Urruty, Conditions for global optimality 2, Journal of Global Optimization, 13 (1998), 349-367.doi: 10.1023/A:1008365206132.

    [2]

    J. Baptiste and H. Urruty, Global optimality conditions in maximizing a convex quadratic function under convex quadratic constraints, Journal of Global Optimization, 21 (2001), 445-455.

    [3]

    A. Beck and M. Teboulle, Global optimality conditions for quadratic optimization problems with binary constraints, SIAM Journal on Optimization, 11 (2000), 179-188.doi: 10.1137/S1052623498336930.

    [4]

    W. Chen and L. S. Zhang, Global optimality conditions for quadratic integer problems, Proceedings of Eighth Symposium on Operations Research Society of China, (2006), 206-211.

    [5]

    D. S. Hanif and H. T. CIHAN, A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique, Journal of Global Optimization, 2 (1992), 101-112.doi: 10.1007/BF00121304.

    [6]

    P. Hansen, B. Jaumard and S. J. Lu, An analytical approach to global optimization, Mathematical Programming, 52 (1991), 227-254.doi: 10.1007/BF01582889.

    [7]

    R. Horst and H. Tuy, "Global Optimization: Deterministic Approaches," Springer-Verlag, Berlin, 1990.

    [8]

    V. Jeyakumar, A. M. Rubinov and Z. Y. Wu, Sufficient global optimality conditions for non-convex quadratic minimization problems with box constraints, Journal of Global Optimization, 36 (2006), 471-481.doi: 10.1007/s10898-006-9022-3.

    [9]

    J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM Journal on Optimization, 11 (2001), 796-817.doi: 10.1137/S1052623400366802.

    [10]

    M. C. Pinar, Sufficient global optimality conditions for bivalent quadratic optimization, Journal of Optimization Theory and Applications, 122 (2004), 433-440.doi: 10.1023/B:JOTA.0000042530.24671.80.

    [11]

    A. M. Rubinov, "Abstract Convexity and Global Optimization," Kluwer, 2000.

    [12]

    M. Schweighofer, Optimization of polynomials on compact semialgebraic sets, SIAM Journal on Optimization, 15 (2005), 805-825.doi: 10.1137/S1052623403431779.

    [13]

    H. D. Sherali and W. P. Adams, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems, SIAM Journal on Discrete Mathematics, 3 (1990), 411-430.doi: 10.1137/0403036.

    [14]

    H. Sherali and C. Tuncbilek, A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique, Journal of Global Optimization, 2 (1992), 101-112.doi: 10.1007/BF00121304.

    [15]

    H. Waki, S. Kim, M. Kojima and M. Maramatsu, Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, (2004).

    [16]

    Z. B. Wang, S. C. Fang, D. Y. Gao and W. X. Xing, Global extremal conditions for multi-integer quadratic programming, Journal of Industrial and Management Optimization, 4 (2008), 213-226.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(69) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return