• Previous Article
    State estimation for discrete linear systems with observation time-delayed noise
  • JIMO Home
  • This Issue
  • Next Article
    Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesian $P$/$P_0$-property
January  2011, 7(1): 67-78. doi: 10.3934/jimo.2011.7.67

Global optimality conditions for some classes of polynomial integer programming problems

1. 

Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, China, China

2. 

School of Information Technology and Mathematical Sciences, University of Ballarat, Victoria 3353

Received  November 2008 Revised  September 2010 Published  January 2011

In this paper, some verifiable necessary global optimality conditions and sufficient global optimality conditions for some classes of polynomial integer programming problems are established. The relationships between these necessary global optimality conditions and these sufficient global optimality conditions are also discussed. The main theoretical tool for establishing these optimality conditions is abstract convexity.
Citation: Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67
References:
[1]

J. Baptiste and H. Urruty, Conditions for global optimality 2,, Journal of Global Optimization, 13 (1998), 349.  doi: 10.1023/A:1008365206132.  Google Scholar

[2]

J. Baptiste and H. Urruty, Global optimality conditions in maximizing a convex quadratic function under convex quadratic constraints,, Journal of Global Optimization, 21 (2001), 445.   Google Scholar

[3]

A. Beck and M. Teboulle, Global optimality conditions for quadratic optimization problems with binary constraints,, SIAM Journal on Optimization, 11 (2000), 179.  doi: 10.1137/S1052623498336930.  Google Scholar

[4]

W. Chen and L. S. Zhang, Global optimality conditions for quadratic integer problems,, Proceedings of Eighth Symposium on Operations Research Society of China, (2006), 206.   Google Scholar

[5]

D. S. Hanif and H. T. CIHAN, A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique,, Journal of Global Optimization, 2 (1992), 101.  doi: 10.1007/BF00121304.  Google Scholar

[6]

P. Hansen, B. Jaumard and S. J. Lu, An analytical approach to global optimization,, Mathematical Programming, 52 (1991), 227.  doi: 10.1007/BF01582889.  Google Scholar

[7]

R. Horst and H. Tuy, "Global Optimization: Deterministic Approaches,", Springer-Verlag, (1990).   Google Scholar

[8]

V. Jeyakumar, A. M. Rubinov and Z. Y. Wu, Sufficient global optimality conditions for non-convex quadratic minimization problems with box constraints,, Journal of Global Optimization, 36 (2006), 471.  doi: 10.1007/s10898-006-9022-3.  Google Scholar

[9]

J. B. Lasserre, Global optimization with polynomials and the problem of moments,, SIAM Journal on Optimization, 11 (2001), 796.  doi: 10.1137/S1052623400366802.  Google Scholar

[10]

M. C. Pinar, Sufficient global optimality conditions for bivalent quadratic optimization,, Journal of Optimization Theory and Applications, 122 (2004), 433.  doi: 10.1023/B:JOTA.0000042530.24671.80.  Google Scholar

[11]

A. M. Rubinov, "Abstract Convexity and Global Optimization,", Kluwer, (2000).   Google Scholar

[12]

M. Schweighofer, Optimization of polynomials on compact semialgebraic sets,, SIAM Journal on Optimization, 15 (2005), 805.  doi: 10.1137/S1052623403431779.  Google Scholar

[13]

H. D. Sherali and W. P. Adams, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems,, SIAM Journal on Discrete Mathematics, 3 (1990), 411.  doi: 10.1137/0403036.  Google Scholar

[14]

H. Sherali and C. Tuncbilek, A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique,, Journal of Global Optimization, 2 (1992), 101.  doi: 10.1007/BF00121304.  Google Scholar

[15]

H. Waki, S. Kim, M. Kojima and M. Maramatsu, Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity,, Dept. of Mathematical and Computing Sciences, (2004).   Google Scholar

[16]

Z. B. Wang, S. C. Fang, D. Y. Gao and W. X. Xing, Global extremal conditions for multi-integer quadratic programming,, Journal of Industrial and Management Optimization, 4 (2008), 213.   Google Scholar

show all references

References:
[1]

J. Baptiste and H. Urruty, Conditions for global optimality 2,, Journal of Global Optimization, 13 (1998), 349.  doi: 10.1023/A:1008365206132.  Google Scholar

[2]

J. Baptiste and H. Urruty, Global optimality conditions in maximizing a convex quadratic function under convex quadratic constraints,, Journal of Global Optimization, 21 (2001), 445.   Google Scholar

[3]

A. Beck and M. Teboulle, Global optimality conditions for quadratic optimization problems with binary constraints,, SIAM Journal on Optimization, 11 (2000), 179.  doi: 10.1137/S1052623498336930.  Google Scholar

[4]

W. Chen and L. S. Zhang, Global optimality conditions for quadratic integer problems,, Proceedings of Eighth Symposium on Operations Research Society of China, (2006), 206.   Google Scholar

[5]

D. S. Hanif and H. T. CIHAN, A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique,, Journal of Global Optimization, 2 (1992), 101.  doi: 10.1007/BF00121304.  Google Scholar

[6]

P. Hansen, B. Jaumard and S. J. Lu, An analytical approach to global optimization,, Mathematical Programming, 52 (1991), 227.  doi: 10.1007/BF01582889.  Google Scholar

[7]

R. Horst and H. Tuy, "Global Optimization: Deterministic Approaches,", Springer-Verlag, (1990).   Google Scholar

[8]

V. Jeyakumar, A. M. Rubinov and Z. Y. Wu, Sufficient global optimality conditions for non-convex quadratic minimization problems with box constraints,, Journal of Global Optimization, 36 (2006), 471.  doi: 10.1007/s10898-006-9022-3.  Google Scholar

[9]

J. B. Lasserre, Global optimization with polynomials and the problem of moments,, SIAM Journal on Optimization, 11 (2001), 796.  doi: 10.1137/S1052623400366802.  Google Scholar

[10]

M. C. Pinar, Sufficient global optimality conditions for bivalent quadratic optimization,, Journal of Optimization Theory and Applications, 122 (2004), 433.  doi: 10.1023/B:JOTA.0000042530.24671.80.  Google Scholar

[11]

A. M. Rubinov, "Abstract Convexity and Global Optimization,", Kluwer, (2000).   Google Scholar

[12]

M. Schweighofer, Optimization of polynomials on compact semialgebraic sets,, SIAM Journal on Optimization, 15 (2005), 805.  doi: 10.1137/S1052623403431779.  Google Scholar

[13]

H. D. Sherali and W. P. Adams, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems,, SIAM Journal on Discrete Mathematics, 3 (1990), 411.  doi: 10.1137/0403036.  Google Scholar

[14]

H. Sherali and C. Tuncbilek, A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique,, Journal of Global Optimization, 2 (1992), 101.  doi: 10.1007/BF00121304.  Google Scholar

[15]

H. Waki, S. Kim, M. Kojima and M. Maramatsu, Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity,, Dept. of Mathematical and Computing Sciences, (2004).   Google Scholar

[16]

Z. B. Wang, S. C. Fang, D. Y. Gao and W. X. Xing, Global extremal conditions for multi-integer quadratic programming,, Journal of Industrial and Management Optimization, 4 (2008), 213.   Google Scholar

[1]

Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191

[2]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[3]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[4]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[5]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[6]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[7]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[8]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[9]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[12]

Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[13]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[14]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[15]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[16]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[17]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[18]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[19]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[20]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]