July  2011, 7(3): 677-697. doi: 10.3934/jimo.2011.7.677

Analysis of globally gated Markovian limited cyclic polling model and its application to uplink traffic in the IEEE 802.16 network

1. 

Department of Telecommunications, Budapest University of Technology and Economics, Budapest

Received  September 2010 Revised  May 2011 Published  June 2011

In this paper we introduce the globally gated Markovian limited service discipline in the cyclic polling model. Under this policy at most K customers are served during the server visit to a station among the customers that are present at the start of the actual polling cycle. Here the random limit K is the actual value of a finite state Markov chain assigned to the actual station. The model enables asymmetric Poisson arrival flows and each station has an individual Markov chain. This model is analyzed and the numerical solution for the mean of the stationary waiting time is provided.
    This model is motivated by the problem of dynamic capacity allocation in Media Access Control of wireless communication networks with Time-Division Multiple Access mechanism. The "globally gated" character of the model is the consequence of the applied reservation mechanisms. In a fixed length frame after allocating the required capacity for the delay sensitive real-time traffic the random remaining capacity is shared among the subscriber stations for the non real-time traffic. The Markovian character of the random limits enables to model the inter frame dependencies of the required real-time capacity at each station individually.
    In the second part of the paper the application of this model to the uplink traffic in the IEEE 802.16 network is discussed.
Citation: Zsolt Saffer, Miklós Telek. Analysis of globally gated Markovian limited cyclic polling model and its application to uplink traffic in the IEEE 802.16 network. Journal of Industrial & Management Optimization, 2011, 7 (3) : 677-697. doi: 10.3934/jimo.2011.7.677
References:
[1]

S. Andreev, Zs. Saffer and A. Anisimov, "Overall Delay Analysis of IEEE 802.16 Network,", Int. Workshop on Multiple Access Comm. (MACOM), (2009).   Google Scholar

[2]

O. J. Boxma, H. Levy and U. Yechiali, Cyclic reservation schemes for efficient operation of multiple-queue single-server systems,, Annals of Operations Research, 35 (1992), 187.  doi: 10.1007/BF02188704.  Google Scholar

[3]

Y.-J. Chang, F.-T. Chien and C.-C. J. Kuo, Delay analysis and comparison of OFDM-TDMA and OFDMA under IEEE 802.16 QoS framework,, IEEE Global Telecomm. Conf. (GLOBECOM), 1 (2006), 1.   Google Scholar

[4]

S. Forconi, G. Iazeolla, P. Kritzinger and P. Pillegi, "Modelling Internet Workloads for IEEE 802.16,", Technical Report CS08-03-00, (2008), 08.   Google Scholar

[5]

R. Iyengar, P. Iyer and B. Sikdar, Delay analysis of 802.16 based last mile wireless networks,, IEEE Global Telecommunications Conference (GLOBECOM), 5 (2005), 3123.  doi: 10.1109/GLOCOM.2005.1578332.  Google Scholar

[6]

Zs. Saffer, An introduction to classical cyclic polling model,, Proc. of the 14th Int. Conf. on Analytical and Stochastic Modelling Techniques and Applications (ASMTA'07), (2007), 59.   Google Scholar

[7]

Zs. Saffer and M. Telek, Stability of periodic polling system with BMAP arrivals,, European Journal of Operational Research, 197 (2009), 188.  doi: 10.1016/j.ejor.2008.05.016.  Google Scholar

[8]

Zs. Saffer and M. Telek, Unified analysis of $BMAP$/$G$/$1$ cyclic polling models,, Queueing Systems, 64 (2010), 69.  doi: 10.1007/s11134-009-9136-7.  Google Scholar

[9]

C. So-In, R. Jain and A.-K. Tamimi, Capacity evaluation for IEEE 802.16e mobile WiMAX,, Journal of Computer Systems, 2010 (2010), 1.  doi: 10.1155/2010/279807.  Google Scholar

[10]

Standard IEEE 802.16-2009, Part 16: Air Interface for Broadband Wireless Access Systems, Standard for Local and Metropolitan Area Networks,, May 2009., (2009).   Google Scholar

[11]

H. Takagi, "Analysis of Polling Systems,", MIT Press, (1986).   Google Scholar

[12]

A. Vinel, Y. Zhang, Q. Ni and A. Lyakhov, Efficient request mechanism usage in IEEE 802.16,, IEEE Global Telecommunications Conference (GLOBECOM), 1 (2006), 1.   Google Scholar

show all references

References:
[1]

S. Andreev, Zs. Saffer and A. Anisimov, "Overall Delay Analysis of IEEE 802.16 Network,", Int. Workshop on Multiple Access Comm. (MACOM), (2009).   Google Scholar

[2]

O. J. Boxma, H. Levy and U. Yechiali, Cyclic reservation schemes for efficient operation of multiple-queue single-server systems,, Annals of Operations Research, 35 (1992), 187.  doi: 10.1007/BF02188704.  Google Scholar

[3]

Y.-J. Chang, F.-T. Chien and C.-C. J. Kuo, Delay analysis and comparison of OFDM-TDMA and OFDMA under IEEE 802.16 QoS framework,, IEEE Global Telecomm. Conf. (GLOBECOM), 1 (2006), 1.   Google Scholar

[4]

S. Forconi, G. Iazeolla, P. Kritzinger and P. Pillegi, "Modelling Internet Workloads for IEEE 802.16,", Technical Report CS08-03-00, (2008), 08.   Google Scholar

[5]

R. Iyengar, P. Iyer and B. Sikdar, Delay analysis of 802.16 based last mile wireless networks,, IEEE Global Telecommunications Conference (GLOBECOM), 5 (2005), 3123.  doi: 10.1109/GLOCOM.2005.1578332.  Google Scholar

[6]

Zs. Saffer, An introduction to classical cyclic polling model,, Proc. of the 14th Int. Conf. on Analytical and Stochastic Modelling Techniques and Applications (ASMTA'07), (2007), 59.   Google Scholar

[7]

Zs. Saffer and M. Telek, Stability of periodic polling system with BMAP arrivals,, European Journal of Operational Research, 197 (2009), 188.  doi: 10.1016/j.ejor.2008.05.016.  Google Scholar

[8]

Zs. Saffer and M. Telek, Unified analysis of $BMAP$/$G$/$1$ cyclic polling models,, Queueing Systems, 64 (2010), 69.  doi: 10.1007/s11134-009-9136-7.  Google Scholar

[9]

C. So-In, R. Jain and A.-K. Tamimi, Capacity evaluation for IEEE 802.16e mobile WiMAX,, Journal of Computer Systems, 2010 (2010), 1.  doi: 10.1155/2010/279807.  Google Scholar

[10]

Standard IEEE 802.16-2009, Part 16: Air Interface for Broadband Wireless Access Systems, Standard for Local and Metropolitan Area Networks,, May 2009., (2009).   Google Scholar

[11]

H. Takagi, "Analysis of Polling Systems,", MIT Press, (1986).   Google Scholar

[12]

A. Vinel, Y. Zhang, Q. Ni and A. Lyakhov, Efficient request mechanism usage in IEEE 802.16,, IEEE Global Telecommunications Conference (GLOBECOM), 1 (2006), 1.   Google Scholar

[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[3]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[4]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[5]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[6]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[7]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[8]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[9]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[10]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[11]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[12]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[13]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[14]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[15]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[16]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[17]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[18]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[19]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[20]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]