• Previous Article
    Performance evaluation of a power saving mechanism in IEEE 802.16 wireless MANs with bi-directional traffic
  • JIMO Home
  • This Issue
  • Next Article
    Analysis of globally gated Markovian limited cyclic polling model and its application to uplink traffic in the IEEE 802.16 network
July  2011, 7(3): 699-716. doi: 10.3934/jimo.2011.7.699

Queueing analysis of data block synchronization mechanism in peer-to-peer based video streaming system

1. 

Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

2. 

Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501

Received  September 2010 Revised  May 2011 Published  June 2011

In a Peer-to-Peer (P2P) based video streaming system such as Coolstreaming, a single video stream is decomposed into multiple sub-streams. A client-peer node receives the sub-streams from multiple parent-peer nodes, combining them into the original video stream. Each client-peer node has a synchronization buffer and a cache buffer. Data blocks are stored in the synchronization buffer in a sub-stream basis, and then forwarded into the cache buffer according to their sequence numbers. In this buffering system, data-block synchronization plays a crucial role to guarantee video quality. In this paper, we consider the performance of data-block synchronization scheme with which data blocks are simultaneously forwarded just after all the data blocks composing a macro data block arrive at the synchronization buffer. We model the synchronization buffer as a multiple-buffer queueing system with homogeneous Poisson arrival processes, deriving the mean forwarding interval. We also consider the frame loss probability for multiple-path video streaming, investigating how the number of sub-streams decreases the frame loss probability. Numerical examples show that increasing the number of sub-streams makes the average forwarding interval large, while the frame loss probability at the bottleneck router is improved. It is also shown that increasing the synchronization buffer decreases the average forwarding interval.
Citation: Sho Nanao, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Queueing analysis of data block synchronization mechanism in peer-to-peer based video streaming system. Journal of Industrial & Management Optimization, 2011, 7 (3) : 699-716. doi: 10.3934/jimo.2011.7.699
References:
[1]

M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron and A. Singh, "SplitStream: High-Bandwidth Content Distribution in Cooperative Environments,", Proceedings of SOSP, (2003), 292.   Google Scholar

[2]

D. Jurca, J. Chakareski, J.-P. Wagner and P. Frossard, Enabling adaptive video streaming in P2P systems,, IEEE Communications Magazine, 45 (2007), 108.  doi: 10.1109/MCOM.2007.374427.  Google Scholar

[3]

K. Kirihara, H. Masuyama, S. Kasahara and Y. Takahashi, "Performance Analysis of a Decentralized Content Delivery System with FEC Recovery,", Advances in Queueing Theory and Network Applications, (2009), 265.   Google Scholar

[4]

B. Li, S. Xie, G. Y. Keung and X. Zhang, Coolstreaming: Design, theory, and practice,, IEEE Transactions on Multimedia, 9 (2007), 1661.  doi: 10.1109/TMM.2007.907469.  Google Scholar

[5]

B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu and X. Zhang, "Inside the New Coolstreaming: Principles, Measurements and Performance Implications,", Proceedings of IEEE INFOCOM, (2008), 1031.  doi: 10.1109/INFOCOM.2008.157.  Google Scholar

[6]

B. Li and H. Yin, Peer-to-peer live video streaming on the internet: Issues, existing approaches, and challenges,, IEEE Communications Magazine, 45 (2007), 94.  doi: 10.1109/MCOM.2007.374425.  Google Scholar

[7]

V. N. Padmanabhan, H. J. Wang, P. A. Chou and K. Sripanidkulchai, "Distributing Streaming Media Content Using Cooperative Networking,", Proceedings of NOSSDAV, (2002), 177.   Google Scholar

[8]

, PPlive,, \url{http://www.pplive.com}., ().   Google Scholar

[9]

, Sopcast,, \url{http://www.sopcast.org}., ().   Google Scholar

show all references

References:
[1]

M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron and A. Singh, "SplitStream: High-Bandwidth Content Distribution in Cooperative Environments,", Proceedings of SOSP, (2003), 292.   Google Scholar

[2]

D. Jurca, J. Chakareski, J.-P. Wagner and P. Frossard, Enabling adaptive video streaming in P2P systems,, IEEE Communications Magazine, 45 (2007), 108.  doi: 10.1109/MCOM.2007.374427.  Google Scholar

[3]

K. Kirihara, H. Masuyama, S. Kasahara and Y. Takahashi, "Performance Analysis of a Decentralized Content Delivery System with FEC Recovery,", Advances in Queueing Theory and Network Applications, (2009), 265.   Google Scholar

[4]

B. Li, S. Xie, G. Y. Keung and X. Zhang, Coolstreaming: Design, theory, and practice,, IEEE Transactions on Multimedia, 9 (2007), 1661.  doi: 10.1109/TMM.2007.907469.  Google Scholar

[5]

B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu and X. Zhang, "Inside the New Coolstreaming: Principles, Measurements and Performance Implications,", Proceedings of IEEE INFOCOM, (2008), 1031.  doi: 10.1109/INFOCOM.2008.157.  Google Scholar

[6]

B. Li and H. Yin, Peer-to-peer live video streaming on the internet: Issues, existing approaches, and challenges,, IEEE Communications Magazine, 45 (2007), 94.  doi: 10.1109/MCOM.2007.374425.  Google Scholar

[7]

V. N. Padmanabhan, H. J. Wang, P. A. Chou and K. Sripanidkulchai, "Distributing Streaming Media Content Using Cooperative Networking,", Proceedings of NOSSDAV, (2002), 177.   Google Scholar

[8]

, PPlive,, \url{http://www.pplive.com}., ().   Google Scholar

[9]

, Sopcast,, \url{http://www.sopcast.org}., ().   Google Scholar

[1]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[2]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[3]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[4]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[5]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[6]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[7]

Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024

[8]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[9]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[10]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[11]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[12]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[13]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[14]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[15]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[16]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[17]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[18]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[19]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[20]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (1)

[Back to Top]